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Due to decelerating gains in single-core CPU performance, computationally expensive simulations are in-
creasingly executed on highly parallel hardware platforms. Agent-based simulations, where simulated entities
act with a certain degree of autonomy, frequently provide ample opportunities for parallelisation. Thus, a
vast variety of approaches proposed in the literature demonstrated considerable performance gains using
hardware platforms such as many-core CPUs and GPUs, merged CPU-GPU chips as well as FPGAs. Typically,
a combination of techniques is required to achieve high performance for a given simulation model, putting
substantial burden on modellers. To the best of our knowledge, no systematic overview of techniques for
agent-based simulations on hardware accelerators has been given in the literature. To close this gap, we
provide an overview and categorisation of the literature according to the applied techniques. Since, at the
current state of research, challenges such as the partitioning of a model for execution on heterogeneous
hardware are still addressed in a largely manual process, we sketch directions for future research towards
automating the hardware mapping and execution. This survey targets modellers seeking an overview of
suitable hardware platforms and execution techniques for a specific simulation model, as well as methodology
researchers interested in potential research gaps requiring further exploration.
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1 INTRODUCTION
Since around 2005, it can be observed that due to the breakdown of Dennard scaling, clock fre-
quencies of single CPUs are no longer increasing significantly, even though the transistor counts
are still growing [167]. Instead, CPU manufacturers have more and more focused on developing
multi-core processors. This in turn calls for parallel computing techniques, as programs (including
simulations) that cannot be run in parallel can no longer simply be sped up by incorporating a
newer and faster CPU. Performance can be increased further when the workload of a programme
is efficiently distributed to heterogeneous hardware such as Graphics Processing Units (GPUs) or
Field Programmable Gate Arrays (FPGAs) [30].
Some types of hardware are better suited for certain tasks than others, for example, tasks with

large amounts of fine-grained parallelism can benefit greatly from themassively parallel architecture
of modern GPUs with its thousands of cores. Tasks that are largely sequential or characterised by
unpredictable data accesses and control flow lend themselves better to CPUs with out-of-order
execution, long pipelines and large caches. Similarly, if offloading a task to a GPU requires copying
large amounts of data to and from graphics memory, execution on a CPU may be preferable even
if substantial parallelism is available. This issue can be addressed by an Accelerated Processing
Unit (APU), where CPU and an integrated graphics core (of lower performance compared to stand-
alone GPUs) share the same memory. Lastly, compute-intensive and memory-light tasks can be
outsourced to FPGAs which can be programmed to carry out specific computations in hardware.
One field that has always sought after more performance is the field of simulation. Faster com-

puters allow an increase in complexity of the incorporated simulation models, allowing researchers
to obtain more accurate results in a faster manner. Agent-based simulations have received broad
attention as they can be employed to study various domains, such as road traffic [46], social net-
works [49], pedestrian movement [170], military [33], biology [6], economics [171], privacy[179],
and so on. The main characteristic of agent-based simulation is that autonomous agents (e.g.,
individuals or entities) act and interact to create effects of emergence on the entire system. The
complex decision-making of agents and the huge scale of many simulated systems can lead to
enormous runtimes, motivating the need for employing high-performance computing platforms.
Agent-based simulations (ABS) are a promising target for parallel computing techniques as

agents are autonomous and in some cases carry out independent computations. In mobility simula-
tions, interactions between agents usually only take place between close-by agents in a somewhat
regular 2D or 3D environment, allowing researchers to employ space partitioning without induc-
ing too much synchronisation overhead. Moreover, many ABS are time-stepped and agents are
often updated at the same logical time, providing inherent independence and thus potentials for
parallelised execution. Unfortunately, being able to partition a problem and execute it in parallel is
not a guarantee that it can be accelerated using heterogeneous hardware.
To enable ABS on heterogeneous hardware, some general challenges have to be overcome.

First, the simulation has to be partitioned with heterogeneity in mind to decide which part of
the program lends itself best to a specific hardware device, considering the resulting overhead
from data transfers between the different devices. From this it follows that, depending on the used
hardware, the mapping of simulation parts to hardware devices will likely be different. Complex
simulations typically also exhibit scattered and unpredictable memory access and control flow as
the model state develops dynamically over time. This further complicates an efficient distribution to
heterogeneous hardware. Lastly, in order to make heterogeneous accelerators available to modellers
even without having in-depth knowledge of the specific hardware platforms, there is a need for
frameworks that abstract away from hardware specifics. Some of the common frameworks provide
variants supporting parallel and distributed execution, e.g., MASON [112], Repast-HPC [36], and
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EcoLab [164]. However, these frameworks only support traditional CPU-based environments. Some
frameworks such as FLAME GPU [35] and MCMAS [103] have been proposed that focus on the
execution on specific accelerators such as graphics cards.

In this survey, we structure the complex landscape of agent-based simulation on heterogeneous
hardware. We give an overview of existing types of hardware that have been employed to accelerate
agent-based simulations and discuss past developments and current trends.While some surveys exist
that present generic high-performance computing techniques using heterogeneous hardware [50,
120, 176], we highlight the specific challenges of ABS on heterogeneous hardware and categorise
an ample body of related work along these challenges. For each challenge, we discuss in detail how
existing literature has contributed to solving them. This overview allows us to identify research
gaps that need to be filled in order to establish heterogeneous accelerators in the simulation domain
and make them applicable to a wider range of problems – ideally by providing an automated process
to support the modeller.
The remainder of this survey is structured as follows: in Section 2, we characterise the main

classes of hardware accelerators for general-purpose computations. Section 3 provides an overview
of agent-based simulation concepts and outlines the computational challenges of executing agent-
based simulations on hardware accelerators. In Section 4, we systematise and survey the existing
works according to the identified challenges and according to the techniques used to do so. In
Section 5, we discuss unresolved challenges and outline how a system tackling these challenges
could look like, thus sketching avenues for future work. Section 6 summarises our findings and
concludes the survey.

2 HARDWARE PLATFORMS
In this section, we describe the technical characteristics of hardware platforms that have been used to
accelerate agent-based simulations, covering many-core CPUs, Graphics Processing Units (GPUs),
Accelerated Processing Units (APUs), Field-Programmable Gate Arrays (FPGAs), Application-
Specific Integrated Circuits (ASICs), and System on Chips (SoCs). Readers familiar with these
platforms may skip this section and continue to Section 3.

2.1 Many-Core CPUs
Architecture: A many-core (or many integrated core, MIC) CPU contains a group of CPU cores
on a single chip. One of the well-known many-core CPUs, the Intel Xeon Phi, is equipped with up
to 72 x86-compatible CPU cores communicating via an internal Network-on-Chip which enables
fast and parallel data transfer between the cores. A many-core CPU can be connected to the host
machine via PCI-E or can be a standalone CPU with direct access to the system memory.
In the past years, a number of non-x86 many-core CPUs have emerged, such as the Parallella

Board [4], the Epiphany-V [135], and the Kalray MPPA (Massively Parallel Processor Array) [43].
Benefits: A notable advantage of some many-core CPUs over GPUs and FPGAs is their capa-

bility to execute largely unmodified parallelised code written for regular CPUs [101]. Since the
individual cores support out-of-order execution, employ deep instruction pipelines, and have access
to comparatively large caches, the need to adapt a program’s control flow to the hardware is less
pressing than with, e.g., GPUs [24]. Further parallelism may be extracted using a single-instruction,
multiple-data (SIMD) style of programming using instruction set extensions such as AVX-512 [86].

Recent work showed that many-core CPUs can substantially accelerate Discrete Event Simulation
(DES) [89, 184]. A number of authors also evaluated the acceleration of various types of simulations
such as fluid dynamics and seismic wave propagation using non-x86 many-cores [29, 148].

Limitations: In light of the comparatively high cost of recent many-core CPUs (≈ US$3368.00 as
of 03/2018 for an Intel Xeon Phi Processor 7290F) compared to other accelerators, the performance
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gains compared to traditional multi-core CPUs have frequently been relatively low (e.g., [13]). Since
the performance depends strongly on parameters such as the number of threads and on the use of
the different available types of memory, parameter tuning may be necessary [110].

2.2 Graphics Processing Units (GPUs)
Architecture: GPUs utilise a massively parallel architecture, which makes them more efficient
than CPUs when large volumes of data can be processed in parallel. Their original purpose was
to accelerate the processing of three-dimensional scenes to be displayed on two-dimensional
screens. However, modern GPUs have evolved to support a wide range of computational tasks
using programming frameworks such as CUDA [133], OpenACC [136], and OpenCL [165]. CUDA
and OpenCL follow a similar programming model, with some differences in terminology.
We sketch the GPU architecture and programming model using NVIDIA’s terminology. AMD

hardware follows a similar design. A modern GPU consists of a scalable number of Streaming
Multiprocessors (SMs), which contain a number of Streaming Processors (SPs) that carry out most
of the computations, Special Function Units (SFUs) for special operations such as trigonometric
functions, and low-latency on-chip memory. Off-chip RAM is shared among all SMs [130].

GPU computations are organised hierarchically: at the lowest level, there are threads representing
a sequential control flow. Threads are grouped into warps of a hardware-specific size (32 threads
on current NVIDIA hardware). Threads within a warp are executed in lockstep, i.e., if the control
flow diverges, the branches are serialised. Thus, it is important to minimise intra-warp divergence.
A configurable number of warps form a block, within which efficient memory synchronisation
is possible. Per-SM warp schedulers dynamically assign runnable warps to the available SPs to
minimise stalling on high-latency memory accesses. Typically, programs schedule many more
threads than there are physical SPs to support this type of memory latency hiding [133].

Memory access overheads can be reduced by adhering to memory access patterns that allow for
coalescing, i.e., aggregated execution of memory accesses by multiple threads [133]. Generally, the
number of memory requests is minimised when adjacent threads access adjacent memory locations.
Achieving memory coalescing is a common focus of works on GPU acceleration (e.g., [52, 186]).

Benefits: GPUs lend themselves to problems that can be expressed so that large numbers of
similar code segments are executed on different data. Often, GPUs accelerate such data-parallel
tasks by one to two orders of magnitude compared to implementations on multi-core CPUs.

Frameworks such as CUDA, OpenCL, and OpenACC, as well as libraries such as Thrust [18] and
CUBLAS [129] enable relatively simple development compared to platforms such as FPGAs [51].
Programming frameworks are available even for more specialised tasks such as ABS [35].
Beside the performance benefits of GPUs, Richmond and Romano [152] emphasise the oppor-

tunities for efficient visualisation of simulations. Since the simulation data is already stored in
graphics memory, visualisation can be achieved easily, for instance by writing to texture buffers.

Limitations: The main requirements for high performance GPU code are a large degree of
parallelism, the possibility to achieve coalesced memory access, and a largely common control flow
among the threads within a warp. Thus, memory-intensive tasks with complex data dependencies
are typically difficult to execute efficiently on GPUs [27, 91].

Further, since dedicated graphics cards are connected to the host CPU via the PCI-E bus, overhead
is introduced by the data transfers between CPU and GPU. For instance, a PCI-E 3.0 x16 link allows
an NVIDIA Titan X card to transfer data between host and graphics memory at up to 16 GB/s, while
the GPU can access its off-chip RAM at up to 336.5 GB/s. However, the impact of data transfers
may be lower when relying on recent architectures’ interconnects such as NVIDIA’s NVLink [131]
and AMD’s Infinity Fabric [3], which achieve throughputs of up to 300 GB/s.
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Compared to many-core CPUs, programming for GPUs still requires profound knowledge of the
GPU architecture [185]. As with many-core CPUs, the large number of configurable parameters
render the performance tuning of GPU programs an important but challenging task [174].

2.3 Accelerated Processing Units (APUs)
Architecture: APUs integrate CPU and GPU on a single chip. Although the term APUs has been
coined by AMD, recent Intel CPUs with Intel HD Graphics follow a similar architecture. Unlike
stand-alone GPUs, the fused GPU of an APU has direct access to the host memory through a
low-latency and high-bandwidth bus.

Benefits: The main benefit of APUs is the opportunity for zero-copy memory access: since
all memory is accessible both from the CPU and the GPU, costly data transfers over a relatively
low-bandwidth bus like PCI-E can be avoided. Zero-copy memory access also provides memory
savings, as only one copy of an object in memory is required. Since memory access is shared, tasks
can efficiently be assigned according to their suitability for the CPU or GPU portion of the device.

Limitations: Existing APU products have focused more on energy efficiency than high perfor-
mance. They typically contain fewer processing units than stand-alone CPUs and GPUs of the
same hardware generation. For example, the Ryzen 5 2400G APU by AMD has 704 Vega-based
stream processors, while the dedicated graphics card AMD RX Vega 64 has 4096 stream processors.
As a consequence, compared to high-end stand-alone CPUs and GPUs, their computational power
is relatively low. Still, as will be discussed in Section 4, some works have considered APUs for
accelerating agent-based simulations.

2.4 Field-Programmable Gate Arrays (FPGAs)
Architecture: A Field-Programmable Gate Array is an integrated circuit made of an array of
interconnected Configurable Logic Blocks (CLBs). FPGAs often provide various communication
interfaces such as PCI-E, UART, and Ethernet. A CLB consists of several slices (sometimes also
called logic cells), each slice containing a set of storage elements and Look-Up Tables (LUTs). A
LUT has a number of inputs and outputs as well as flip flops that store a mapping between possible
inputs and outputs. The mapping between inputs and outputs is defined by the users [70]. In
addition, the FPGA may have access to several GB of off-chip DRAM.
The logic to be placed on an FPGA is typically specified in a Hardware Description Language

(HDL) such as VHDL [72] or Verilog [137]. In recent years, there have been intensive efforts to
enable High-Level Synthesis, i.e., to generate FGPA layouts directly from high-level programming
languages such as C, C++, or Java. Recently, Intel released a dedicated SDK to support FPGA
programming using OpenCL [85].

Benefits: Due to the flexibility and high energy efficiency of FPGAs, they are frequently used
for computationally intensive and highly parallelisable tasks. For instance, FPGAs can be three
orders of magnitude faster than GPUs when conducting specialised tasks such as encrypting a
single 64-bit block by the Data Encryption Standard (DES) [30]. In contrast to CPUs or GPUs, on
which data paths are fixed, FPGAs provide flexible and customised data paths [149]. In the past
years, FPGAs have received more attention in the field of simulation, particularly in Electronic
Design Automation, since hardware designs can be naturally expressed as FPGA layouts.

Limitations: As with GPUs, FPGAs are connected to a host CPU without direct access to system
memory. The resulting need for data transfers can reduce the potential for performance gains.

FPGAs are regarded as lacking in programmability when compared to CPUs and GPUs [30, 51].
Although recent efforts towards high-level synthesis alleviate this limitation, manual tuning is still
necessary to achieve the best performance [55, 123].
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Finally, FPGAs are configured for a specific task. Since reconfiguration can take multiple
hours [198], FPGAs do not facilitate development processes that require fast iteration. This may
limit the applicability of FPGAs in early phases of simulation model development, where changes
to the simulation model frequently occur and require immediate feedback for evaluation.

2.5 Other Hardware Platforms
ASICs are integrated circuits fabricated to support a particular application. System on Chip (SoC)
devices, which integrate components such as microprocessors, memory, and input/output on a
single chip are commonly fabricated as ASICs. To our knowledge, ASICs and System on Chip devices
have not yet been explored as platforms to accelerate ABS. However, in the field of DES, some
works have considered offloading to ASICs [20, 34, 57, 113, 150]. Notably, some of the envisioned
components were fabricated physically [20].
Recent ASIC and SoC devices include Google’s Tensor Processing Units (TPUs) and NVIDIA’s

Xavier. We briefly sketch potential uses of these hardware platforms in the context of ABS. The
core of a TPU is a matrix-multiply unit designed to accelerate machine learning applications based
on neural networks. At such tasks, TPUs can outperform recent CPUs or GPUs by a factor of up
to 30 [94]. A potential use case for TPUs in ABS lies in the acceleration of agent models relying
on neural networks (e.g., [138]). When exploring the input parameter space of an ABS (e.g., [28]),
TPUs could also accelerate machine learning algorithms used to steer the exploration.

NVIDIA’s Xavier is a SoC targeted towards use in autonomous vehicles, focusing on deep learning
and vision tasks. The system is equipped with 512 Stream Processors, an 8-core ARM CPU, and
a processor designed for vision tasks [132]. Xavier could be used to accelerate applications with
feedback between an ABS and a real-world system, e.g., for dynamic road traffic control based on
simulation-based predictions (e.g., [80]). The processing of sensor data and the execution of the
simulation could be assigned to the different processing elements of Xavier.

Although there are promising directions for future work based on these emerging platforms, we
are not aware of existing literature on the acceleration of ABS using ASICs and SoCs. Thus, these
platforms will not be considered in the remainder of the survey.

3 AGENT-BASED SIMULATION
Agent-based modelling and simulation (ABMS) is a widely used approach [128] to evaluate complex
systems in various domains such as traffic, crowds, economics, information propagation, and
biology. The field of ABMS is extensive, leading to a large number of tools and frameworks (e.g.,
MASON [112], Repast [36], NetLogo [173], Swarm [119], MATSim [83]), some of them general
purpose, others tailored to specific applications or domains. A 2010 survey by Allen discusses a
selection of ABMS frameworks and their applications in a wide range of domains [5]. More recently,
Abar et al. [2] provides a comprehensive overview of more than 70 agent-based simulation tools in
terms of programming languages, software and hardware requirements, and agent interaction types,
as well as the target domains and the difficulty in model development. There exists a number of
surveys evaluating aspects such as performance, usability and extensibility [5, 23, 99, 126, 127, 156,
172]; other literature reviews put a particular focus on specific domains, including economics [124],
energy [197], geology [117], and sociology [61]. Lastly, other works try to identify the fundamental
elements and principles of ABMS to formulate basic simulator architectures [12, 84].

3.1 Modelling Approach
In ABS, the simulated entities are agents that perform actions autonomously and interact with other
agents based on certain rules. ABS typically follows a Sense-Think-Act cycle (e.g., [154]): in the Sense
stage, an agent detects and analyses its neighbours as well as the environment in which it resides.
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In the Think stage, an agent makes judgement based on the information collected during the Sense
stage. The update of states takes place in the Act stage. The simulation time is typically advanced
in fixed time steps at which all agents update their states. However, if a model requires agents to
update their states at variable points in simulation time, time advancement using a discrete-event
simulation (DES) approach may be more appropriate. In DES, state updates are performed through
events scheduled for execution at discrete points in simulation time. The simulation proceeds by
iteratively executing the earliest remaining event, potentially scheduling new events in the process.

Independent of the time advancement mechanism, a defining characteristic of ABS distinguishing
it from other simulation techniques is the autonomy of agents, i.e., “agents are endowed with
behaviours that allow them to make independent decisions” [115]. Since the focus of this survey
paper is on ABS, we exclude simulation domains such as physics and chemistry, which usually
consider sets of entities that are passively affected by their environment. However, we do discuss
a number of methods proposed outside of the ABS domain with direct applications to ABS, e.g.,
GPU-based priority queues in the context of DES.

3.2 Computational Aspects
The literature on executing ABS using heterogeneous hardware can be organised according to
the challenges addressed by the individual works. In our literature review, we identified five such
challenges, which are consequences of features shared by most ABS models.
Crooks and Heppenstall summarise the literature on definitions of the term “agent” using the

core features of autonomy (independent decision-making), heterogeneity (opportunity for different
attributes per agent), and being active (independent influence on the simulation) [40]. The feature
of “being active” is further described using a number of sub-features including mobility (ability to
move in the simulation space) and interactivity (ability to communicate extensively).

From this definition, we identify a number of features with direct implications on the execution
of agent-based simulations on parallel hardware:

• Autonomy, Heterogeneity and Mobility: the independent decision-making per agent
provides opportunities for parallelisation across the computations involved in the individual
agents’ Sense-Think-Act cycle. On the other hand, since agents move and act according to
their individual attributes as well as their internal states and current environment, the actions
of an agent population are commonly diverse both in time and space. For instance, at certain
points in simulated time there may be areas of the simulation space with little activity and thus
low computational demands, while areas populated with highly active agents may require
intense computations. Thus, the heterogeneity and mobility of agents make it challenging to
balance the workload among the available processing elements. Further difficulties are given
by the diversity in the type of action performed, since some hardware accelerators achieve
highest performance when executing large numbers of identical computations in parallel.

• Interactivity: the communication among agents is typically reflected by memory accesses
when the communicating agents are simulated on the same device, or by data transfers over
a bus like PCI-E when crossing device boundaries. Since the agents’ communication patterns
are usually not fully predictable, exploiting regularities in the communication to increase
performance, e.g., by storing messages in low-latency memory shared by two communicating
agents, is non-trivial. Further, given autonomous and mobile agents, even under a highly
suitable and dynamic hardware assignment there will typically still be a need for substantial
amounts of data transfers among processing elements.

When considering the modelling and simulation life cycle, another important property is given by
the frequent changes to the model code in the iterative process commonly applied when developing
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simulation models. As a property of the agent-based modelling and simulation life cycle, it has been
stated that modellers iteratively extend and refine models to “balance the expressive power of more
details with the cost of additional complications” and that in fact “iterative model development
and use is the ABMS paradigm” [128]. Given the resulting frequent changes to the models and the
difficulty predicting the runtime behaviour resulting from the features above, there is insufficient
information about the data dependencies, instruction mix or control flow to develop an overall
simulation program optimised for a particular model. This is in contrast to well-defined tasks such
as linear algebra operations, which allow for the development of highly optimised libraries targeting
specific hardware platforms. Instead, there have been attempts to provide efficient facilities for
tasks common to many agent-based simulations, allowing developers to specify models without
the need to consider low-level specifics of the given hardware platform.
We summarise the above discussion by identifying five challenges for agent-based simulations

on heterogeneous hardware platforms along which the remainder of the survey will be organised.
While the challenges are shared by other types of workloads, the features discussed above make
the challenges particularly common and pressing in agent-based simulations.

(1) Hardware assignment: Awell-known challenge in parallel and distributed simulation lies in
partitioning the simulation workload among the processing elements. Generally, there are two
dimensions according to which a simulation can be partitioned [122]: domain decomposition
partitions according to the simulation space (e.g., different roads in a traffic simulation), while
functional decomposition partitions according to different models (e.g., different layers of
the network stack in a computer network simulation). In ABS on heterogeneous hardware,
the hardware assignment is further complicated by the shifting workload due to the agents’
autonomy and mobility, and by the heterogeneity of the hardware platform, in which devices
may differ in their suitability for certain types of computations. Existing techniques to
approach this challenge either attempt to determine static boundaries within the simulation
that allow for an efficient partitioning without further adaptation, or dynamic hardware
assignments that are updated at simulation runtime.

(2) Data transfer overhead: As a result of the agents’ mobility and interactivity, even under an
efficient static or dynamic partitioning, frequent data transfers are usually necessary among
the hardware devices to migrate agents or to reflect inter-agent communications. Techniques
have been proposed to exploit the limited agent velocity and interaction range to reduce the
impact of the data transfers on the simulation performance.

(3) Scattered memory accesses: The dynamic and largely unpredictable agent movement and
interaction translates to memory access patterns that are in conflict with the regular, i.e.,
linear, accesses preferred by common accelerators. The literature proposes representations
of irregular structures using regular memory layouts and caching heuristics to improve the
efficiency when accessing the simulation data.

(4) Maximisation of parallelism: A defining characteristic of simulations is the notion of
simulated time, which puts constraints on the simulation progress during parallel execution.
Although there may be a substantial amount of computation scheduled, processing elements
may frequently be blocked waiting in order to maintain synchronisation with the other
processing elements. The field of parallel and distributed simulation proposes a wide range of
algorithms to extract as much parallelism as possible while maintaining the synchronisation
of simulated time [53]. In the past years, a number of works have re-evaluated and adapted
these approaches targeting the execution of ABS on accelerators.

(5) Abstraction from hardware specifics: Given the frequent adaptations and extensions
commonly made during the development of an ABS model and during the verification
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and validation process, it is necessary to provide frameworks to simplify the modellers’
implementation work while still maintaining high performance. In the past years, a number
of frameworks that abstract from the hardware details as well as libraries for unified access
to the memory of different devices have been presented in the literature.

4 ADDRESSING THE CHALLENGES OF AGENT-BASED SIMULATION ON
ACCELERATORS

Agent-based simulation on hardware accelerators started to receive attention from the research
community from the early 2000s onwards. The vast majority of these works focused on GPUs
(see Figure 1 for an overview of the number of publications since 2002), mainly because they are
comparatively inexpensive, and because, in recent years, the ease of programming of GPUs is
slowly approaching that of CPUs. Furthermore, well-established programming frameworks such as
OpenCL enable the formulation of models in a less hardware-specific manner. For publications
that considered specific simulation models, Table 1 shows the simulation domains and hardware
platforms, providing researchers with pointers to relevant works in their respective domain.

Our survey of the literature is organised along the key challenges we identified in Section 3, that
is, hardware assignment, data transfer overheads, scattered memory accesses, maximisation of
parallelism, and abstraction from hardware specifics. In the following, we discuss the techniques
from the literature applicable to these key challenges in agent-based simulation. Table 2 summarises
the systematisation of knowledge presented in this survey. It contains our classification of challenges,
techniques, publications, and types of accelerators.
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Fig. 1. Publications on agent-based simulation on heterogeneous hardware by year and hardware type.

Domain/Hardware Many-Core CPU GPU APU FPGA
Mobility [9, 79, 80, 144, 146, 160, 163, 166, 181, 189] [180] [175]
Biology [103] [1, 47, 74, 76, 95, 107, 145, 151–153, 169, 199] [41]
Ecology [104, 192] [178]
Social [101] [92, 93, 106, 108, 177, 185, 196] [59]

Physics and Chemistry [17, 69, 98, 118, 143, 159, 192] [121]
Networks [7, 8, 22, 100, 139, 141, 157, 169]

Domain-independent
Simulation Framework [103] [39, 87, 88, 103, 105, 151, 153, 190]

Table 1. Simulation model domains considered in the works covered in the survey.
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Challenge Technique Publications

Hardware
assignment

Static assignment by type of computation Many-Core [101], GPU [8, 15, 22, 75, 80, 118, 142, 163, 189]
[74, 76, 193], APU [180], FPGA [41, 59, 175, 178]

Dynamic assignment based on runtime measurements GPU [19, 63, 66, 96, 182, 193], FPGA [19]
Data transfer
overheads

Overlapping of communication and computation GPU [16, 17, 100]
Computation replication at partition boundaries GPU [1, 199]

Scattered

Manual caching in shared memory GPU [107, 151, 199]
Heuristics for agent update order GPU [9, 68, 92, 93]

memory accesses APU [180], GPU [47, 69, 98, 114, 144–146, 152, 166, 177]Representation of irregular data structures
by arrays and grids [7, 14, 95, 109, 140, 141, 159, 168, 183, 196], FPGA [121, 149]

Maximisation of
parallelism

Multiple replications in parallel GPU [100, 104, 108, 142, 160, 192]
Window-based event execution GPU [7, 26, 139, 141, 143, 157, 169, 196]

Speculative execution GPU [106, 109], FPGA [121]
Computation sorting GPU [95, 100, 169]

Abstraction from
hardware specifics

Frameworks to support simulation development Many-Core [103], GPU [39, 79, 103, 114, 151, 153]
Unified memory access GPU [87, 88, 105, 190]

Table 2. A classification of the challenges in ABS on accelerators along the relevant works addressing them.

4.1 Hardware Assignment
One of the main challenges in parallel and distributed computations in heterogeneous hardware
environments lies in finding a suitable partitioning, i.e., assignment of a given problem to the
available hardware [56]. We discuss techniques that have been used to address this problem
according to two different, yet interrelated, aspects: first, we consider techniques to select suitable
hardware for sub-tasks according to their ability to efficiently execute certain types of computations.
The minimisation of data transfers among the partitions running on separate devices will be
considered in the next subsection.

The existing approaches can be roughly categorised as follows:
1. Static assignment: if the simulation model involves different types of computations that

clearly suggest a certain hardware mapping, it may be sufficient to partition the model prior
to a simulation run without any adaptation during runtime. For instance, model segments
involving large numbers of independent floating point operations may be well-suited for
execution on a GPU, whereas segments with highly data-dependent control flow suggest the
execution on a CPU.

2. Dynamic assignment: frequently, the dynamic behaviour of a simulated system at run-
time translates to unpredictable computational patterns. In such cases, maintaining high
performance may require an adaptation of the hardware mapping based on performance
measurements at runtime. An inherent challenge of dynamic assignment is the trade-off
between the performance increase through an improved assignment and the costs of runtime
measurements and re-assignment.

An ample body of research has considered the parallelisation of general programs onto heteroge-
neous platforms, which is an enormous challenge due to the arbitrary control flows and memory
access patterns that can be present in general programs. Thus, typically, the approaches limit
themselves to program portions that are particularly amenable to parallelisation on accelerators. In
the case of ABS, constraints such as the separation of data into a per-agent state and the limited
sensing range of agents somewhat simplify the problem of parallelisation, potentially enabling a
higher degree of automation in the hardware mapping. In Section 5, we outline the vision of an
automated approach and the required building blocks towards an automated hardware mapping
for heterogeneous ABS.
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4.1.1 Static Assignment. The simplest hardware assignment is to execute the entire simulation
on a single device. This approach is common in the existing work on FPGA-based ABS. For instance,
Vourkas and Sirakoulis [178], who implement an environmental model simulation based on cellular
automata (CA). The authors note the structural similarity between a two-dimensional cellular
automaton and an FPGA and assign one cell to each Configurable Logic Block (CLB). If the number
of cells exceeds the number of CLBs, the simulation lattice is partitioned into several layers, which
are processed one after the other. Similarly, Cui et al. [41] and Georgoudas et al. [59] show high
performance when assigning ABS models operating on cellular grids to a single FPGA. A number
of works on GPU-based ABS take the same approach of assigning the entire simulation to the
accelerator [1, 79, 80, 144–146]. In these works, the computations associated with the Sense-Think-
Act cycle of the individual agents are often assigned to one GPU thread each.

Often, the available hardware devices lend themselves to specific types of computations, or the
memory consumption of the simulation exceeds the capacities of an individual device. Then, it is
necessary to find a partitioning for the ABS, which may follow either a domain decomposition or a
functional decomposition [122].

Domain decomposition: When using domain decomposition, the simulation space is parti-
tioned and each partition is assigned to a separate processing element. An example is given by
the work by Lai et al. [101], who implement Game of Life [37] and a simulation of urban sprawl
processes using cellular automata [186]. The authors compare the performance achieved when
using one CPU per execution node, one GPU per node and 60 cores per CPU-based many-core
accelerator, using MPI for inter-node communication in each instance. The authors conclude that
the use of accelerators provides a performance benefit over the purely CPU-based execution. Given
a sufficiently large number of assigned processors, using the CPU-based many-core accelerator
with fully device-based simulation achieves similar performance as the GPU-based acceleration.

Generally, a domain decomposition of an ABS targeting hardware accelerators is suited to assign
different parts of the simulation to devices of the same type. Since different types of hardware
device typically favour certain types of computations, when assigning computations to different
types of hardware, functional decomposition is commonly applied instead. It is thus natural that
most of the literature on hardware assignment of ABS to heterogeneous hardware has focused on
functional decomposition.

Functional decomposition: An efficient functional decomposition identifies static functional
boundaries in the considered simulation to maximise the computational performance on each device,
while minimising data transfers. Pavlov and Müller [142] discuss approaches for the hardware
assignment of ABS and conclude that an approach in which the CPU and the GPU hold duplicated
or partial agent and environment data is the most promising. An overall development process for a
GPU-accelerated ABS starting from a CPU-based implementation is proposed in [75, 118]. After the
decomposition of the simulation into small task modules, modules suitable for execution on a GPU
such as loops are identified heuristically and manually replaced with GPU-executable counterparts.
Several case studies [74, 76, 118] show substantial speedup when employing this method.
Some works have focused on isolating simulation code that heavily relies on floating point

arithmetic to be executed on a GPU. Bauer et al. [15] assign the discrete part of a combined
continuous-discrete simulation to the CPU and the continuous part, which relies on floating point
arithmetic, to the GPU. The authors conclude that while keeping the GPU fully utilised poses a
challenge, models with large numbers of floating point operations can benefit fromGPU acceleration.
Andelfinger et al. [8] compare different GPU/CPU simulator architectures aiming to offload events
associated with floating point operations to a GPU. In a basic CPU/GPU hybrid scheme (cf. Figure 2a),
the CPU offloads each event to the GPU individually. The required data transfers can be reduced
by aggregating independent events to execute them in a single step (cf. Figure 2b) and by leaving
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computation results required by subsequent events in graphics memory (cf. Figure 2c). Finally,
if the entire simulation is ported to the GPU, data transfers are only required at the start of the
simulation and once the simulation terminates (cf. Figure 2d). While the simulation performance
increases with each of the above optimisations, the developer is burdened with some additional
complexity.
Since floating point arithmetic is a natural fit to the GPU’s capabilities, models heavily relying

on such operations are likely to benefit from a functional decomposition focusing on this aspect.
Examples of such models include kinematic equations as in microscopic traffic simulation or crowd
simulation, as well as models of wireless communication and of biological or chemical processes.

In another approach to functional decomposition, the agent behaviours are left to the CPU while
environment dynamics are handled by the GPU [118]. With this approach, the author aims to
reduce the impact of the GPU acceleration on the maintainability of the simulator code. To increase
performance, portions of the agent behaviour that do not depend on the agent state, e.g., perception
of the environment, are carried out on the GPU independently of individual agents for all locations.

In contrast to the above works, a number of approaches partition the simulation along functional
boundaries specific to the given simulation models. For instance, when the underlying simula-
tion can be clearly separated into model computation and management tasks, a master-worker
scheduling approach as shown by Bilel et al. [22] in the context of large-scale mobile networks
simulation can be applied. In the proposed design, the model is executed on the GPU, while the
CPU orchestrates the event scheduling, simulation status monitoring, and memory allocation.

Finally, the nature of traffic simulation allows for a relatively straight-forward functional decom-
position according to different simulation aspects. Xu et al. [189] and Song et al. [163] assign the
agent mobility in a mesoscopic traffic simulation to the GPU, whereas the route calculation, agent
generation, and file reading and writing remain on the CPU. The two parts run asynchronously to
hide data transfer latencies. In the traffic simulation on an APU presented by Wang et al. [180],
sorting of agent states is required to locate each agent’s neighbours. To reduce synchronisation
overheads on the GPU portion of the APU, the GPU portion only performs state updates and local
sorting, whereas the sorting across GPU blocks is handled by the CPU resources. The work separa-
tion can be carried out efficiently using zero-copy memory accesses. Considering FPGAs, Tripp et
al. [175] showed how the movement of agents on individual lanes can be computed on an FPGA,
while the agents’ transitions from one road to another as well as the behaviour at intersections are
computed on the CPU.

In summary, most approaches relying on static hardware assignment split the simulation work-
load into coarse-grained functional tasks so that some tasks are clearly suited for a certain hardware
device. To minimise trial-and-error, heuristics may be applied to identify a suitable mapping of
tasks to the hardware. Tasks involving large numbers of parallel floating point operations are
among the most common portions of simulations offloaded to accelerators.
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Fig. 2. Four CPU-device simulation schemes [8]. Devices can be GPUs or many-core CPUs.

ACM Computing Surveys, Vol. 51, No. 6, Article 131. Publication date: February 2019.



A Survey on Agent-based Simulation using Hardware Accelerators 131:13

4.1.2 Dynamic Assignment. While a wide range of literature has considered the problem of
dynamically adapting a partitioning of agent-based simulations tomultiple CPUs (e.g., [38, 111, 188]),
we are not aware of such works that specifically target heterogeneous hardware environments. In
the following, we outline recent works on dynamic assignment of general computational workloads
to heterogeneous hardware. Since these works are generic, they cannot rely on knowledge of
the general structure of ABS simulators or on model knowledge. Still, the proposed methods to
determine suitable hardware platforms for given segments of code can be applied to ABS as well.
Belviranli et al. [19] propose a self-scheduling scheme for partitioning generic application

workloads into blocks and assigning them to CPUs, GPUs, and FPGAs. The proposed system
consists of two phases: in the first phase, the system performs an online training with a small
amount of data to estimate the maximum workload capacity size of each hardware device. Fast
convergence is achieved by fitting four sampled data points to a logarithmic function. Once the
capacity is determined, the processing unit’s performance can be inferred from the same data.
When the change of processing speed between two samples drops below a threshold, it is used
as the final estimated value. In the second phase, the remaining workload is partitioned based on
the relative processing speeds of the available processing units, assigning a large portion of the
workload to faster processing units.

Some authors use machine learning techniques such as support vector machines, artificial neural
networks, and decision trees to distribute the workload of OpenCL programs to CPUs and GPUs. For
example, Grasso et al. [63, 96] and Zhang et al. [193] translate a single-device OpenCL program to a
multiple-device program, while Wen et al. [182] focus on scheduling multiple OpenCL functions to
run in parallel on CPU/GPU. They train a machine learning algorithm according to a set of typical
OpenCL programs and benchmarks. The prediction generated by the machine learning algorithm
guides the assignment of a portion of the computation to CPU or GPU. Their results show that the
above three machine learning approaches outperform purely CPU- or GPU-based approaches. The
scheduling scheme by Wen et al. achieves a performance improvement compared to a first-come,
first-served scheme and a scheme where computation-heavy tasks are handled by the GPU.

To automate the compilation of sequential programs for parallelised execution on heterogeneous
hardware, Grosser and Groesslinger [66] present a compiler that generates CPU and GPU code.
Regions with mostly static control flow and sufficient computational intensity are detected and
transformed to a formal representation to facilitate program transformations [65]. After optimi-
sations have been performed to increase memory access locality and parallelism, CUDA code for
GPUs is generated from the formal representation. A runtime library eliminates repeated memory
allocations and unnecessary data transfers between CPU and GPU. The decision whether a region
is compute-intensive enough for execution on the GPU is made statically or at runtime using
heuristics based on metrics such as the number of instructions. The authors conclude that the
compiler is able to translate CPU code into cross-platform code with no performance penalty. For
some computations, such as the correlation benchmark from polybench [147], significant speedup
of up to two orders of magnitude can be achieved.
The main difficulty in automated hardware mapping lies in determining the control flow and

data dependencies of the original program. Current approaches either rely on the program code
being formulated in languages such as OpenCL that express independent control flows explicitly,
or only consider specific portions of programs such as loops with largely static control flow. In
ABS, however, most of the available parallelism may exist across the update routines of separate
agents. Thus, without semantic information describing the code structure, automatic detection of
the parallelism is challenging. In Section 5, we sketch how the common structure of many ABS
may be utilised to support the extraction of parallelism.
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4.2 Minimisation of Data Transfer Overheads
Since most hardware accelerators are equipped with their own memory, simulations making use of
accelerators typically require data transfers between host and accelerator memory. Even with a
high-quality domain decomposition or functional decomposition of the simulation, agent mobility
and communication or the data dependencies between the different functional aspects make data
transfers unavoidable. In this section, we survey works that focus on minimising the cost of such
data transfers. The existing approaches can be categorised according to the following techniques:

1. Overlapping of communication and computation: some authors proposed techniques
to hide communication overheads by transferring data while independent computations are
performed. Sometimes, the technique has been referred to as latency hiding (e.g., [25]).

2. Computation replication at partition boundaries: another technique to address com-
munication overheads is to increase the amount of computation performed before synchroni-
sation among processing elements is required. This is achieved by duplicating some compu-
tations on multiple processing elements, thus delaying the need to resolve data dependencies
across processing elements.

4.2.1 Overlapping of Communication and Computation. One way of mitigating the overhead
from data transfers between the host and an accelerator is to execute computations at the same time
as data is being transferred. In the approach described by Kunz et al. [100], event computations are
overlapped with data transfers across the CPU-GPU boundary, thus hiding data transfer latencies
in a pipelined fashion. Since events from multiple simulation instances are considered concurrently,
there are substantial opportunities for overlapping these steps. While their approach is applied to a
discrete-event simulation, it can be applied to time-stepped ABS by initiating the transfer of output
data of some agents’ state updates at a given time step, while computations for other agents are
still in progress.

Bauer et al. [16, 17] propose a generic API to optimise the data transfer between global memory
and shared memory of CUDA GPUs using so-called warp specialisation. The warps within one
cooperative thread array are split into two groups: Dedicated memory warps are in charge of data
transfer between the on-chip and off-chip memory. Compute warps process the data. The approach
improves performance over thread-level separation between communication and computation since
separate warps can follow divergent control flows without any performance penalty. While their
general idea can be applied to other types of independent processing elements, the warp-based
implementation is specific to GPUs.

4.2.2 Computation Replication at Partition Boundaries. In time-stepped ABS, at model time 𝑡 each
agent updates its state based on the states of its neighbours at time 𝑡−1. If the simulation is distributed
across multiple processing elements, synchronisation and data transfers are required to provide
this information at each time step. The associated overhead may make up a substantial portion of
the simulation runtime. Thus, some authors have proposed methods to reduce synchronisation
by replicating some computations on multiple processing elements, similarly to performance
optimisations in numerical computing [45]. The main challenge when applying this approach to
ABS is the consideration of the model-specific sensing range of agents and the speed according to
which the effect of an agent’s actions can propagate throughout the simulation space.

Aaby et al. [1] present a multi-level data partitioning scheme for cellular simulations on multi-
CPU/GPU clusters. The simulation state is partitioned into blocks and each block is executed by a
thread, a core, or a node, depending on the configured granularity. In contrast to the traditional
data partitioning into blocks of 𝐵 × 𝐵 cells and synchronisation at each time step, their approach
partitions the data into several overlapping (𝐵 + 2𝑅) × (𝐵 + 2𝑅) blocks where ((𝐵 + 2𝑅)2 − 𝐵2) cells
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form the overlapping area. The computation in the overlapping area is performed redundantly
by multiple processing units. Thus, assuming that at each time step, a cell can only affect its
immediate neighbours, 𝑅 time steps are required for a cell in the inner block to be affected by cells
in another processing element. Therefore, synchronisation is only required every 𝑅 time steps.
Between synchronisation points, an error propagates inwards within the overlapping areas, but
does not affect the inner 𝐵×𝐵 cells before a new synchronisation occurs. This partitioning approach
is further employed in multi-GPU clusters on the node-, GPU-, block-, and thread-level, and for
multi-CPU clusters at the node-, socket-, core-, and thread-level.

While Aaby et al. illustrate the idea based on cellular grids, the approach applies to general ABS.
The sensing range of agents is generally limited and provides an upper bound on the propagation
of the effects of an agent’s actions within a time step. As long as overlapping segments of the
simulation space can be distributed to the processing elements in a manner so that an effect requires
at least 𝑅 > 1 time steps, some synchronisations can be avoided. The generality of the approach
is illustrated by Zou et al. [199], who extend the idea of computation replication to graph-based
topologies in a GPU-accelerated epidemic ABS.

4.3 Scattered Memory Accesses
Throughout the past decades, the increase in computational performance has outpaced the decrease
in memory access latencies, leading to modern hardware designs towards large caches and deep
memory hierarchies. In the context of ABS, the issue of memory access latencies is particularly
pressing: due to the autonomous decision-making of agents, the runtime interactions among agents
and their environment cannot easily be predicted before executing the simulation, significantly
limiting the opportunities for a priori optimisation of data access patterns. However, commonalities
between different simulation models can be exploited to propose data structures supporting efficient
simulation of an entire range of models on a specific type of accelerator.
Since dynamic memory allocation on GPUs is costly [54], most GPU-based simulators allocate

memory for data such as the agent states statically (e.g., [107]). Another approach is to determine
after each time step the required amount of memory and perform allocations accordingly [141].

We categorise the existing approaches to address scattered memory accesses as follows:
1. Manual caching in shared memory: although the support for transparent caching has

improved in recent years, achieving highest performance frequently still requires manual
caching in low-latency memory. In ABS, agents often influence and are influenced by their
direct neighbours. This fact can be exploited when arranging the simulation data in memory,
reducing high-latency memory accesses during state updates.

2. Heuristics for agent update order: since the data dependencies between agent state up-
dates are typically not known prior to the execution of the simulation, minimising cache
misses during the state updates is non-trivial. Heuristics have been proposed, aiming to
favour sequences of computations acting on the same agent data.

3. Representation of irregular data structures by arrays and grids: the hardware archi-
tecture of GPUs and FPGAs is designed so that highest performance is achieved when acting
on regular data structures such as arrays and grids. Thus, efforts are taken to represent
highly irregular data structures in a regular fashion. When covering the techniques from
the literature, we first cover model-specific data structures such as graph representations of
a simulated road network. Subsequently, we discuss works covering two generic building
blocks commonly required as part of ABS engines: priority queues and sorting.

4.3.1 Manual Caching in Shared Memory. Richmond et al. [151] propose to utilise the shared
memory of the GPU as a manual cache. In their agent-based simulation framework for cellular
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models in biology based on FLAME GPU [35], they copy sets of messages to be transferred between
agents into shared memory. Each thread within a block can then efficiently iterate through the
messages and identify those pertaining to the local agent. Once all threads have iterated through
the messages, the next sets of messages are loaded into shared memory. Recently, Heywood et
al. [78] specialised their messaging method for traffic simulations on graph-based road networks.
Messages are sorted by the edge (road segment) or vertex (intersection) so that each agent only
considers messages that pertain to its immediate neighbourhood in the road network.
Similarly, Zou et al. [199] implement a manual software cache in shared memory to increase

the performance of their graph-based epidemic simulation on GPU clusters. Before the simulation
commences on the GPU, the CPU sorts the edges of the directed graph by the source vertex. Each
thread block’s shared memory stores edges originating from one specific node. Since each block
processes only edges originating from this node, a cache hit rate of at least 50% is ensured.
In the GPU-based ABS by Li et al. [107], assuming a constant number of agents, each agent is

assigned to a GPU thread and its state data is permanently kept in global memory. The simulation
space is partitioned into a grid of rectangles. Once a search for the neighbours within a circle
around an agent is required, a search rectangle that encloses the searching circle is created, so
only agents inside the search rectangle have to be considered. Two approaches to utilise the GPU’s
shared memory are proposed: in the first approach, one block manages the searching process for a
chunk C of close-by agents. Per-block shared-memory loads the data of the agent and the agent’s
neighbours. Each agent in C has a high probability of being in the other agents’ neighbourhoods,
so that these agents can frequently be accessed through the current block’s low-latency shared
memory. However, since the limited shared memory capacity allows only for small numbers of
agents to be stored, it is still likely that some neighbours are managed by another block and thus
have to be accessed through global memory. In the second approach, the shared memory loads the
data of agents located in the union of all search rectangles of the agents’ handled by the current
block. If the shared memory is not sufficient to hold all agents’ data, the data is loaded as a sequence
of chunks. Of course, the increase in the search space given by the union of search rectangles
leads to a higher number of unnecessary agent accesses through shared memory. To address this
problem, the union rectangle can be constructed on the warp level instead of the block level.

4.3.2 Heuristics for Agent Update Order. The order in which agent updates are performed must
adhere to the causal dependencies between the agent states and behaviours, e.g., in road traffic
simulation, vehicles in direct proximity must be at the same point in simulated time to be able to
interact according to the model specification.
Typically, this is achieved by a strictly time-stepped scheme in which agents always reside at

the same time step, after which conflicts in the resulting agent states are resolved [191]. However,
since in a typical simulation not all agents interact at each point in time, some agents may be
updated further into the simulated future than others without affecting the simulation results [9].
Harris and Scheutz have shown that distributed agent-based simulations can be accelerated by
favouring agent updates that resolve dependencies across multiple processing elements [68]. This
way, processing elements waiting for others to proceed can be unblocked, decreasing the amount
of idle time. Their approach can be applied independently of the underlying hardware platform,
but requires bounds on the sensing range and the agent movement per time step.
Jin et al. [92] present an information propagation simulation supporting execution on HPC

systems and single GPUs and extend it to run on multiple GPUs [93]. Their focus lies on maximising
the cache hit rate when traversing a graph according to rules defined by the simulation models. Two
categories of approaches are developed for the cascade model [60] and the threshold model [62],
which both simulate the propagation of information among nodes in a graph: vertex-oriented
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processing and edge-oriented processing. For the vertex-oriented approach, the authors further
describe two agent update orders: one iterates starting from active vertices, i.e., those that already
have the information, and the other from inactive vertices. Since the costs depend on the portion of
active nodes, the simulation can switch dynamically between the two vertex-oriented approaches.
Finally, the edge-oriented approach iterates over the connecting edges between two vertices. Since
the number of edges is constant over a simulation run, the cost of the edge-oriented approach is less
variable than that of the vertex-oriented approaches. The authors achieved the highest performance
when dynamically switching between the two vertex-oriented approaches.

4.3.3 Representation of Irregular Data Structures by Arrays and Grids. GPUs and FPGAs are
particularly suited for operations on regularly structured data. However, many model types specify
topologies that are more naturally expressed in terms of irregular structures such as graphs. Further,
execution of the simulator core itself may require operations on irregular data structures.

A basic optimisation commonly applied in works on GPU-based computing to improve memory
access patterns is the transformation of the data layout in memory from arrays of structures (AoS)
to structures of arrays (SoA) (e.g., [151, 166]). Commonly, sequential programs store data in an AoS
representation. Since AoS bundles the properties associated with each object in object-oriented
programming, or the states of agents in agent-based simulations, it is a natural way to represent
data within these paradigms. However, with an AoS data layout, parallel operations on the same
property across many objects results in scattered memory accesses. An SoA data layout bundles the
same property across all objects, which can increase cache hits rates and opportunities for memory
access coalescing, thus improving performance substantially.

Beyond this simple optimisation, the data representation can be specialised for a given model to
further improve performance. In the following, we give an overview of methods applicable to ABS
to achieve high performance by translating irregular data structures to a more regular form.

Model-specific data structures
Early works on executing ABS using GPUs frequently focused on cellular grids and translated

the required computations into the graphics processing domain. In a pioneering work done by
Harris et al. [69], GPU shaders are used for implementing computations on the RGBA values in a
texture that holds the agents’ states. The same idea is employed by Lysenko et al. [114], Perumalla
and Aaby [145], and Kolb et al. [98].

Perumalla et al. [145] evaluate the performance of running agent-based simulation entirely on a
GPU. They ported the cellular models Mood Diffusion [77, 125], Game of Life [58] and Schelling
Segregation [158]. Through the Open Graphics Library (OpenGL), individual agent states are
mapped to pixel colour values. The authors report a speedup of 15 to 40 compared to CPU-based
sequential execution. Kolb et al. [98] develop a particle simulation and a GPU-based collision
detection mechanism built on the authors’ previous work [97]. Similarly, Richmond et al. [152]
utilise the GPU’s texture processing ability and map agent states onto texture data. To accelerate the
neighbourhood detection, the simulation space is partitioned dynamically according to the agents’
current states. The algorithm to generate partitions is borrowed from the particle pinning problem
in rigid body particles physics [64, 67]. Identification of the start and end of the partition boundary
is performed similarly to the method described in [134]. Textures are used to represent the agents’
states and vertex texture fetching enables the search for the start and end of the partition boundary
by comparing the partition value to the previous agent’s state.

To enable traffic simulations on GPUs, Perumalla [144] (and Perumalla et Aaby [146]) proposes
to model the road network as a grid made up of cells. A road network in Cartesian coordinates is
translated to a grid representation overlaying the network: a cell in the grid is marked as occupied
when an edge of the original road network starts in the cell, passes the cell, or ends in the cell. In
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graphics memory, the cells’ properties such as turning probabilities and length are stored in texture
buffers. Simulation is carried out by performing operations on the texture buffers.
A different method for traffic simulation on GPUs is presented by Strippgen and Nagel [166],

who propose a queue-based approach using CUDA. Each road is represented as a single first-in,
first-out (FIFO) queue stored in memory in the form of a ring buffer. With the ring buffer, insertion
of a vehicle entering a road and removal of a vehicle exiting a road is achieved with constant time
complexity. Coalesced memory access can be achieved by processing adjacent roads using adjacent
threads. Since the vehicles’ mobility is modelled by a fixed per-link velocity, their approach can be
considered mesoscopic. The representation of lanes as ring buffers relies on changes of the relative
position of vehicles being rare. Behaviours such as overtaking or lane-changing are not modelled
and would require random insertions and removals from the ring buffers, which are associated
with linear time complexity.

Other domains in which agent-based simulations have been successfully ported to GPUs using
model-specific data structures include collision detection [177] and a simulation study of tuberculo-
sis [47]. In the former, a grid is split into tiles and data at the boundary of the tiles is replicated so
that a consecutive space is occupied in the global memory of the GPU. In the latter, the authors
propose to use a sorted array according to the liveness status of agents, so that the state of a new
agent can be stored in a memory location previously occupied by one of the dead agents.

Sorting and priority queues
Full or partial sorting is frequently required in agent-based simulations, e.g., for neighbourhood

discovery or to implement priority queues (PQ) if time advancement is performed in a discrete-event
manner. These operations can involve large amounts of data-dependent and scattered memory
accesses and are therefore challenging to implement efficiently on hardware accelerators. Since
this operation can occupy a substantial portion of the simulation runtime [155], a number of works
have focused on memory layouts and algorithms for sorting and priority queues on accelerators.
As building blocks for time advancement in a discrete-event fashion, parallel reduction and

bitonic sorting are commonly used in GPU- and FPGA-based simulation [95, 140, 159, 180, 196].
We discuss these two operations jointly due to their structural similarities. In both cases, an input
array is split into chunks, each chunk being handled by one thread. At each cycle, the sorted
arrays/minimum values of two threads are then merged to form a new input array. Thus, at each
cycle, the number of chunks and active threads is cut into half. The algorithm iterates until only
one thread is active, leaving a sorted array or the global minimum value, respectively.

He et al. [71] propose a parallel heap-based PQ onGPU based on a previous CPU-based design [44].
The data structure resembles a binary min-heap, but stores 𝑟 items per heap node. Items are inserted
and extracted in a joint bulk operation that inserts up to 𝑘 ≤ 2𝑟 and extracts up to 𝑟 elements.
At any time the root node is guaranteed to hold the highest-priority elements, while elements
of lower priority are gradually inserted into deeper levels of the tree over the course of multiple
insert-extract operations. Parallelism can be exploited across the sorting operations on the items
within a tree node, across the nodes on one level of the tree, and by processing all even-numbered
and odd-numbered levels of the tree in parallel. The costs of the queue operations can be hidden by
performing them in parallel with the processing of extracted items.

Similarly, the FPGA-based DES simulator by Rahman et al. [149] relies on a pipelined heap [21]
for storing events. In contrast to the parallel heap by He et al., the pipelined heap is designed to
achieve near-constant access times, but does not provide bulk operations.
A number of works avoid the need for a global PQ holding all future events. Instead, the set of

events is considered jointly in an unsorted fashion [168], split by model segment [159] or simulated
entity [7, 109, 196], split according to a fixed policy [141, 183], or split randomly [121]. To determine
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the events that can be executed without violating the simulation correctness, a parallel reduction is
performed to determine the minimum timestamp among the events.
Baudis et al. [14] evaluate the performance of PQs on a GPU implemented as a single parallel

heap or as a set of ring buffers, implicit binary heaps, and splay trees [162] in the context of DES and
path finding on grids. Their results indicate that for up to about 500 elements per PQ, ring buffers
achieve the highest performance. At larger element counts, implicit heaps outperform the other
approaches in their study. Their results suggest that higher performance is achieved by relying on
multiple PQs, one for each agent or set of agents, compared to a single PQ holding all events.

4.4 Maximisation of Parallelism
The autonomous decision-making and mobility of agents can limit the exploitable parallelism in a
simulation in two ways: first, variations in the computational intensity among the model segments
may leave some processing elements idle. Second, the single-instruction multiple-thread execution
model of GPUs requires divergent operations within a warp to be serialised.
The existing techniques to maximise the parallelism of ABS using accelerators can be roughly

categorised as follows:
1. Multiple replications in parallel: full utilisation of a massively parallel accelerator requires

large numbers of computations that are independent and can thus be executed in parallel.
If a simulation involves a sequence of mostly dependent computations, the overheads for
communication may outweigh the gains from parallelisation. Thus, techniques have been
proposed to perform computations from multiple simulation runs in parallel.

2. Window-based event execution: in simulations involving a discrete-event mechanism,
only a proper subset of the simulated entities may require an update at a certain point
in simulation time. Multiple authors have proposed gathering events across a window in
simulated time, and executing these events in parallel. In effect, this approach forces a discrete-
event approach into a time-stepped execution. A key difference among the techniques lies in
whether the simulation correctness is strictly maintained.

3. Speculative execution: as in general optimistic parallel and distributed simulation [53],
computations may be performed speculatively to improve hardware utilisation. A rollback
mechanism is required to revert to a correct simulation state after erroneous computations.

4. Computation sorting: on a GPU, threads within a warp following divergent branches of
the control flow are serialised. Since each agent performs actions based on its attributes,
its current state as well as its environment and neighbouring agents, the computations at
each simulation step are often diverse across agents. Some authors have proposed sorting of
computations to minimise the serialisation resulting from branch divergence.

4.4.1 Multiple Replications in Parallel. If an individual simulation run does not provide suffi-
cient parallelism to fully utilise the available hardware, a Multiple Replications in Parallel (MRIP)
approach [142] can be applied, as shown by Shen et al. [160]: in their approach, multiple replica-
tions of a traffic simulation [181] are executed in parallel on a GPU. Thus, both the parallelism
among agents as well as the parallelism across replications can be exploited. Laville et al. [104]
implement a multi-agent simulation of microorganisms in soil for CPU/GPU in OpenCL. Each
GPU thread manages one agent and each block is responsible for one simulation instance so that
multiple simulation instances can run concurrently on one graphics card. The idea is applied to
discrete-event simulations by Kunz et al. [100], focusing on executing parameter studies comprised
of multiple replications on a GPU.

In addition to exploiting the parallelism across replications, Li et al. [108] aim to avoid unnecessary
redundant computations common to multiple replications. They propose a cloning mechanism for
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ABS on the GPU: in an ensemble simulation run comprised of multiple simulation instances, the
computations that are common to multiple instances are only performed once. When the behaviour
of an agent diverges between two simulation instances, a clone of the agent is created. Since the
agent may affect other agents, cloning is performed according to the propagation of the effects
of the original change in agent behaviour. Similarly to the technique “computation replication at
partition boundaries” (cf. Section 4.2.2), cloning exploits the limited propagation speed of agent
updates due to the limited sensing ranges and movement speeds of agents. If agents move and
communicate arbitrarily across the entire simulation space, the required number of clones is too
large to achieve a performance benefit. Across cloned simulation instances, neighbour detection
can be aggregated to improve the utilisation of the GPU resources. The benefit of cloning is limited
when simulation runs diverge strongly, e.g., across multiple runs of a stochastic simulation using
different seeds for random number generation. Recently, the cloning approach has been applied to
large-scale cellular simulations on GPU clusters [192].

4.4.2 Window-based Event Execution. On a GPU, all threads in a warp execute the same sequence
of instructions on different elements of data. If no input data is available for some of the threads
within a warp, the hardware utilisation is reduced. In ABS, this issue is particularly obvious when
time advancement is performed in a discrete-event fashion to accommodate varying state update
intervals among the agents. Then, the probability that many events share the same timestamp
may be low. Thus, a simple parallelisation across the events at a certain point in model time may
be insufficient. An approach to address this problem is to execute DES models in a time-stepped
fashion: all events within a certain time interval are executed in parallel. The lower bound of this
time interval is usually referred to as Lower Bound on Time Stamp (LBTS), which is similar to
Global Virtual Time in optimistically synchronised parallel and distributed simulation [90]. With a
sufficiently large time step size, hardware utilisation is increased. However, since dependencies
between events are not considered, the simulation results may differ from a sequential execution.
A study comparing the performance of time advancement mechanisms for simulations on the

CPU and the GPU is presented by Perumalla [143]. They study diffusion simulations running in
a time-stepped, discrete-event, and hybrid fashion. The GPU variant is implemented in the GPU
programming language Brook [26]. While the GPU outperforms the CPU in the time-stepped
variant, it does not perform as well as the discrete-event implementation on the CPU. However,
high speedup is achieved using the hybrid approach, where at each cycle, the minimum gap between
two events is used as a time step. The simulation time then advances according to this time step.
Park and Fishwick [139, 141] present a method for queuing network simulation that executes

a DES model in a time-stepped fashion. The simulation time advances according to a fixed time
step size, but skips periods where no events occur. All events within the current time step are
executed without considering potential dependencies. Although the results are affected by their
approach, the authors show that for a queueing network simulation, error bounds can be given.
Other works assume a minimum time delta between an event and its creation (lookahead) to
guarantee the correctness of the simulation results [7, 157, 196]. If lookahead is available, a window
can be determined within which events are independent, allowing for parallel execution without
affecting the results.
The current time window is extended dynamically in work by Tang and Yao [169] to allow

more events to be executed in parallel. After executing all events within the current window, their
algorithm evaluates the first event in the event queue with a timestamp larger than the LBTS that
can still safely be executed according to the lookahead.

4.4.3 Speculative Execution. To maintain the correctness of the simulation results when exe-
cuting in parallel on an accelerator, the simulator must consider the dependencies between state
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updates. In some of the approaches described above, a time window is determined where state
updates cannot affect each other. If it is difficult to determine a time window of sufficient size
to extract substantial parallelism, a speculative (or optimistic) approach can be employed: state
updates are performed without regard for correctness, and rolled back if errors are detected.
Speculative execution of simulations on FPGAs has been first demonstrated by Model and

Herbordt [121]. They make use of predictions of the interaction between particles, generating new
events accordingly. Events may later be cancelled as a consequence of a false prediction.
Targeting GPUs, Li et al. [106] present an execution model that achieves high parallelism by

speculative event execution. In an initial step, all events that may occur in the simulation are
created. Subsequently, all events are executed in parallel. A scanning process detects and revokes
causally invalid event executions: if an event leaves the simulation in an incorrect state according to
a model-specific criterion, the erroneous event and all events created by it are revoked recursively.
A more general approach for GPU-based discrete-event simulation is presented by Liu and

Andelfinger [109]. An optimistic execution scheme based on the Time Warp algorithm [90] im-
plemented in CUDA is shown to be beneficial at low event density in simulated time. To support
rollbacks in case of erroneous computations, the authors show how the default random number
generator in CUDA can be reversed computationally without storing additional data.

4.4.4 Computation Sorting. The individual decision-making of the autonomous and heteroge-
neous agents often leads to diverse computations being executed at the same simulation step. Some
approaches attempt to arrange the assignment of computations to the available threads on a GPU
so that the serialisation caused by branch divergence within a warp is minimised.
In their DES engine on the GPU, Tang and Yao [169] sort events by type before execution, i.e.,

by the code associated with the event.
The idea is applied to GPU-based execution of multiple simulation instances at the same time by

Kunz et al. [100] (cf. Section 4.4.1). If the simulation instances do not diverge too strongly, many
events of the same type are available across multiple instances, enabling efficient parallel execution.
Kofler et al. apply computation sorting to their ABS of mosquitoes [95]. In their simulator, a

one-to-one mapping between agents and threads is used. Depending on their current state, agents
may perform different operations, which can result in taking different control flow branches during
the state updates. Thus, to reduce divergence among threads within a warp, agents are sorted by
their current state, so that the state updates of adjacent agents share the same control flow.

In a recent work, Chimeh et al. [32] provide guidelines on formulating models to be executed in
FLAME GPU so that branch divergence is minimised. They suggest modifying the state machines
defining the agent behaviour to eliminate conditional branches by creating a new state or even a
new agent type for each branch. The state updates of agents currently in the same state can then
be executed without divergence.

4.5 Abstraction from Hardware Specifics
Compared to model development in CPU-based environments, development for accelerators can be
cumbersome and error-prone. To avoid the need for modellers to gain deep expertise in program-
ming for specific accelerators, several frameworks have been proposed that enable the specification
of parts of the model structure and behaviour in a hardware-agnostic fashion. Since ABS models
are commonly developed, modified and extended in an iterative process, it is critical to avoid the
need for modellers to consider low-level aspects of accelerators. The following works address the
abstraction from hardware specifics:

1. Frameworks to support simulation development: some authors have proposed generat-
ing partial model code to be executed on accelerators from domain-specific languages or the

ACM Computing Surveys, Vol. 51, No. 6, Article 131. Publication date: February 2019.



131:22 Jiajian Xiao, Philipp Andelfinger, David Eckhoff, Wentong Cai, and Alois Knoll

reliance on a library of pre-defined implementations of common simulation tasks and models.
However, in these approaches, developing a full ABS will typically still require manual imple-
mentation work using comparatively low-level languages such as CUDA. Further, workload
partitioning and assignment to different hardware devices is currently not considered by
these approaches.

2. Unified memory access: since in most cases, the CPU and hardware accelerators involved
in a simulation operate on separate memory, resolving data dependencies may involve
cumbersome explicit data transfers. A number of authors have proposed techniques to
transparently access data in programs executed on heterogeneous hardware.

4.5.1 Frameworks to Support Simulation Development. In the Flexible Large Scale Agent Mod-
elling Environment (FLAME GPU) [151, 153], agent states are specified using the state machine
model X-Machine [48, 82]. Modellers define agent states in an XML-based format, while state
transitions, i.e., the code segments describing the state updates, have to be manually specified
as CUDA code. Generic facilities for exchanging messages between agents are provided by the
framework. Traffic simulation has been presented as one of the use cases of FLAME GPU [79].
The domain-specific language OpenABL [39] enables the specification of ABS models in a

compact and platform-independent fashion. The OpenABL code is translated to an intermediate
representation, from which code targeting different backends for sequential, parallelised, as well as
GPU-based execution can be generated.
Another framework for GPUs and other many-core architectures is called Many-Core Multi-

Agent System (MCMAS) [103]. MCMAS provides a high-level Java interface to OpenCL code as
well as a set of pre-defined data structures and functions called plugins. To implement agent models,
users either rely on plugins or define their own plugins as OpenCL code that can be called from
Java code. The authors state that unlike FLAME GPU, in which models are targeted exclusively at
the framework, the models defined in MCMAS can be reused by other agent-based simulators.
While FLAME and MCMAS both reduce the implementation work required to develop agent-

based simulations targeting accelerators, these frameworks do not provide guidance or automation
in distributing the simulation workload to the available hardware. Thus, manual experimentation
is required to determine a suitable hardware mapping.

4.5.2 Unified Memory Access. GPGPU frameworks such as OpenCL or CUDA require the user
to either explicitly trigger data transfers between host and device memory, to explicitly select
certain variables or memory regions for access from both CPU and GPU code [133], or to annotate
the program to manage data transfers [105, 190]. These manual steps complicate the development
of agent-based simulations in heterogeneous environments. Some works aim to improve on this
situation by transparently transferring required data between host and graphics memory. However,
in languages based on C or C++, static alias analysis, i.e., determining which pointers refer to the
same memory regions, is known to be undecidable [88].
Jablin et al. [87, 88] presented the first fully automated data management system based on

compilation steps and a runtime library. The developer formulates his program and GPU code
as if all data resides in host memory and can be accessed both from the CPU and GPU. The
proposed approach instruments the code to track accesses to different memory regions using code
instrumentation and trapping of system calls. To avoid the need for static pointer analysis, memory
accesses through pointers are tracked by the runtime library. In addition to transparently handling
data transfers, CPU-GPU communication is optimised during compile time by re-ordering the
program flow to reduce the alternation between computations and data transfers. Unnecessary
data transfers are avoided by leaving data in the GPU memory until it is accessed from the host.
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Fig. 3. Workflow of the envisioned automated offloading procedure.

While the work of Jablin et al. could be applied to automate data transfers in heterogeneous
ABS, the detection of parallelism is not covered. In Section 5, we sketch research directions towards
automation in porting ABS to accelerators.

5 TOWARDS AN AUTOMATED OFFLOADING PROCEDURE
From the observations in the previous section, we can state that there is a vast range of techniques
covering the main challenges of high-performance ABS on hardware accelerators. However, there
exist only fewABS frameworks that support such accelerators. Since existing agent-based simulation
and model implementations typically target purely CPU-based environments, there is a clear need
for processes and tools to support the transition to an execution on accelerators [187]. More
specifically, modellers and simulationists should be supported in the parallelisation and hardware
mapping as much as possible. While methodologies have been proposed to systematise the steps of
porting a simulation to a GPU [76, 118], there is a lack of automated tools to support this process.
The problem of automatic parallelisation of general programs is a broad and active field of

research [54]. Substantial successes have been achieved with respect to parallelisation of com-
putationally intensive loops with predictable and mostly static control flow [66], whereas the
extraction of parallelism across complex and irregular programs is still a largely manual process.
Common approaches include specifying software systems using formalisms that express parallelism
explicitly [81, 102, 116] or annotating programs with parallelisation hints [42]. In essence, these
approaches provide the compiler or parallelisation middleware with a dependency graph of the
statements or code blocks within the original program.

Fortunately, many agent-based simulators and models roughly follow a common set of properties
that simplify the extraction of parallelism. We identify the following constraints that can be
leveraged to support the parallelisation process:
(1) Time-stepped execution: usually, the model time is advanced in fixed increments. At each time

step, all agents update their states.
(2) Two states per agent: to decouple the simulation results from the order in which agent updates

are performed, simulators commonly support storing each agent’s old state at 𝑡 − 1 and the
new state at 𝑡 separately. During an update from 𝑡 − 1 to 𝑡 , only read accesses are performed
to the agents’ states and the environment state at 𝑡 − 1, and only write accesses to the states
at 𝑡 . Thus, within an update, there are no read-after-write dependencies across agents.

(3) Sense-Think-Act cycle: we assume that agent updates follow the well-known Sense-Think-Act
cycle (cf. Sec. 3.1), with one such cycle per model.

With these constraints, a natural approach to parallelisation is to offload individual stages of
a model’s Sense-Think-Act cycle to an accelerator. For instance, in crowd simulations using the
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Algorithm 1 Example for model code annotated with the stages of an agent update.
1: #pragma agent_begin

2: class Agent:
3: Coord position;
4: void executeOnTimeStep():
5: #pragma sense_begin
6: List agents = getNeighbouringAgents(position);
7: #pragma sense_end

8: #pragma think_begin
9: Coord velocity = computeVelocity(agents);
10: #pragma think_end

11: #pragma act_begin
12: position = position + velocity;
13: #pragma act_end

14: #pragma agent_end

social force model, the Think stage comprised of the computation of the force affecting an agent
may be performed by one thread of a GPU per agent.
In the following, we sketch an envisioned workflow and the required tools to support users

in porting an existing CPU-based ABS to a system equipped with hardware accelerators. For the
targeted simulator architecture, we assume a traditional master-worker scheme, with the host CPU
acting as the master and assigning work to the available accelerators at each time step.

5.1 Proposed Work Flow
The proposed semi-automated process is visualised in Figure 3. To facilitate the automatic par-
titioning of the simulation source code into segments that can be outsourced to various types
of hardware, we suggest manually annotating the source code according to the Sense-Think-Act
paradigm. From that it follows that the smallest unit that can be offloaded to a hardware accelerator
in our proposed framework is one of these three stages. Each of the stages is profiled in terms of
memory and computational requirements. According to the gathered requirements, an optimisation
problem is solved to generate a hardware assignment (rightmost part of Figure 3).
For simplicity, we assume that all data required by the stage fits into one of the accelerator’s

memory entirely. Otherwise, agents could be distributed across multiple accelerators or processed
in batches, both implying additional communication costs.

5.1.1 Input. The source code is annotated manually to signify the stages of the Sense-Think-Act
cycle, e.g., in the form #pragma sense_begin, #pragma sense_end, and so forth. A simple example
for a crowd simulation is given in Algorithm 1. In addition to the manual annotations, this clear
separation may require refactoring of the simulation code. By parsing the annotated source code,
the framework obtains a mapping between code and stages that will later be enriched with data
from measurements. The second input is a specification of the available hardware. Each hardware
device is characterised by its available memory, computational performance, and host-device
data transfer overhead. The computational performance can be stated in terms of single-threaded
performance on CPUs, many-core CPUs, GPUs, and APUs. We assume that for an FPGA, only model
stages for which implementations already exist are eligible for offloading. Thus, the computational
performance of an FPGA is given with respect to specific model stages.

5.1.2 Memory Access Profiling. Now that the source code is partitioned into offloadable stages
and the capabilities of all the hardware components are known, the data dependencies of each

ACM Computing Surveys, Vol. 51, No. 6, Article 131. Publication date: February 2019.



A Survey on Agent-based Simulation using Hardware Accelerators 131:25

stage are determined. Assuming a node in a graph represents one stage, then an edge in this
graph represents a data dependency between these stages. The dependency can refer to either
agent or environment data. The weight of the edge is the volume of the data that is accessed
in the CPU-based simulator, i.e., that has to be transferred during offloading. Usually, the Think
stage only has a dependency on the Sense stage within the same model and agent (intra-agent
dependency), whereas the Sense stage might depend on the environment and on other agents’
states (inter-agent dependency). Although we assume that an individual stage is not partitioned
across multiple hardware devices, the amount of data gathered during the sense stage may vary
over the course of the simulation. For instance, if agents form clusters in the simulation space, the
number of neighbours per agent may increase over time. Thus, the data dependencies should be
measured with respect to typical scenario conditions. To avoid exceeding the memory capacity of
one of the considered hardware devices, the profiling can be repeated for a worst-case scenario.
Tools exist that are able to ascribe memory accesses performed during a program run to the

source functions, data structures or threads [10]. For instance, the tool PinComm constructs a
dynamic data flow graph from instrumented program executions [73]. The annotations shown
in Algorithm 1 allow us to map function names to the separate agent update stages. Thus, it is
possible to obtain the amount of memory accessed within each stage. Once the graph describing the
amount of memory accesses across stages is created, the implications in terms of memory copying
of moving a certain stage to a hardware device can directly be evaluated. For example, if the Think
stage is moved to the GPU and the Sense and Act stage remains on the host CPU, then the edges
entering and leaving the Think node determine the data transfer overhead. The actual cost of this
copy procedure can be obtained from the device specification or through measurements.

5.1.3 Computational Profiling. In addition to the memory requirements of each stage, infor-
mation about the computational characteristics of each stage is required. The estimated runtime
could be inferred from hardware performance models [11, 31, 161, 195]. Approaches as those
described in Section 4.1.2 can be applied to estimate the suitability of different agent update stages
for execution on a certain accelerator. By characterising the workload incurred by each stage in
terms of instruction mix and memory accesses as well as the number of agents, the performance of
executing the full-scale simulation can be estimated [63, 96, 182, 193]. Alternatively, if the runtime
of a stage is dominated by a sub-task that can easily be ported to an accelerator, measurements
with respect to this task can be performed directly on the accelerator [19].

5.1.4 Optimisation Problem. Building on the graph that represents data dependencies, an opti-
misation problem of assigning stages to hardware types can be formulated, similar to the approach
targeting embedded systems by Zhang et al. [194]. In essence, constraints are formulated so that
each stage is assigned to the host or a device, resulting in an overall simulation schedule. Im-
portantly, the optimisation problem must reflect the data location after each stage or time step
(e.g., [116]). For instance, to avoid data transfers, it may be more efficient to execute two subsequent
stages on the same accelerator. The objective function of the optimisation problem is the overall
runtime, i.e., the sum of all estimated execution times on the respective device and the incurred
communication costs by distributing nodes of the dependency graph that are connected by an edge.

5.1.5 Output. The output of the optimisation steps is a recommendation of which stages should
be executed on which hardware device. It is then the task of the user to port the code of each
stage so it can be executed on the assigned device. This might require specific knowledge, e.g.,
programming in VHDL or OpenCL and can therefore be an obstacle to some researchers. Given
that some established simulation models are used by many researchers (e.g., a CSMA/CA model in
network simulation or different car-following models in traffic simulation), a public repository of
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common simulation models could be created, similarly to the plugin approach used inMCMAS [103].
Researchers could download these crowd-sourced simulation models to enable parts of their own
simulations to be run on heterogeneous hardware environments, and contribute their own model
implementations. Such a repository would also reduce the need to estimate execution times and
improve the optimisation results by allowing direct measurements on the potential target devices.
Similarly, after porting a specific model stage, new measurements may be performed to provide the
optimisation process with more accurate performance data.

5.1.6 Discussion. In our approach, we take a pragmatic perspective: while the envisioned
workflow is achievable based on existing building blocks, our assumptions may leave substantial
performance potentials unexplored. In particular, by assuming that models and their stages are
both executed as a series of dependent steps, we only exploit the inter-agent parallelism within
each stage, while any parallelism across stages is not considered. In the following, we revisit the
key challenges of ABS using hardware accelerators and sketch techniques from the literature that
could be applied to maximise the performance benefits given our assumptions.
The hardware assignment (cf. Section 4.1) is the main focus of the proposed work flow. Above,

we describe a static assignment using a functional decomposition. Still, the optimisation problem
that determines the hardware mapping could be updated according to runtime measurements.

To minimise data transfer overheads that cannot be avoided (cf. Section 4.2), a bulk execution of
multiple simulation runs would be feasible. The optimisation problem could be adapted so that
the computational and memory requirements reflect those of each stage executed within multiple
simulations runs at the same time. The output of the optimisation process would then be a schedule
for an execution in a multiple replications in parallel (MRIP) fashion [100, 142] .
The technique of overlapping computations with data transfers seems challenging in our ap-

proach, since we assume a serialisation of the agent update stages. However, pre-fetching across
stages may be performed by commencing data transfers once some agents have finished a stage.
Scattered memory accesses and the maximisation of parallelism (cf. Sections 4.3 and 4.4) could

be addressed by providing a library of optimised functions and data structures for operations such
as inter-agent communication or neighbour search (e.g., [35, 103]).
A certain degree of abstraction from hardware specifics (cf. Section 4.5) is achieved by the

automated profiling and hardware mapping of our proposed workflow. Since each stage is executed
on a single accelerator, facilities for unified memory access across all devices are not required.
Instead, all agent data is updated locally on the accelerator and transferred automatically according
to the schedule determined in the optimisation process.
Overall, the envisioned workflow is intended to rely on existing tools and techniques to allow

researchers to exploit the hardware at their disposal with reasonable performance gains, while
avoiding the need for costly and time-consuming manual optimisation steps as much as possible.

6 CONCLUSIONS
We presented a survey of the literature on agent-based simulation using hardware accelerators.
We categorised existing approaches according to the key challenges of hardware assignment,
minimisation of data transfer overheads, scattered memory accesses, maximisation of parallelism,
and the abstraction from hardware specifics. Our survey provides modellers with an overview of
techniques to execute a certain class of models on the available hardware. Methodology researchers
are given a summary of the existing work, pointing out research gaps where further exploration
is required. Our main observations are two-fold: first, most of the literature in the past years has
focused on GPUs. We expect a significant amount of work exploring agent-based simulations on
FPGAs to appear in the near future. Second, while a vast amount of work has proposed techniques
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that allow for efficient execution of agent-based simulations, only few techniques have found
their way into a unified framework. Thus, the burden of developing a simulation executable in a
heterogeneous environment is carried by the modeller. Aiming to reduce the need for expertise in
the programming for accelerators, we sketched our vision of a framework for automated hardware
mapping and performance optimisation based on building blocks from the literature.
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