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The goal of privacy metrics is to measure the degree of privacy enjoyed by users in a system and the amount
of protection offered by privacy-enhancing technologies. In this way, privacy metrics contribute to improving
user privacy in the digital world. The diversity and complexity of privacy metrics in the literature makes
an informed choice of metrics challenging. As a result, instead of using existing metrics, new metrics are
proposed frequently, and privacy studies are often incomparable. In this survey we alleviate these problems
by structuring the landscape of privacy metrics. To this end, we explain and discuss a selection of over eighty
privacy metrics and introduce categorizations based on the aspect of privacy they measure, their required
inputs, and the type of data that needs protection. In addition, we present a method on how to choose privacy
metrics based on nine questions that help identify the right privacy metrics for a given scenario, and highlight
topics where additional work on privacy metrics is needed. Our survey spans multiple privacy domains and
can be understood as a general framework for privacy measurement.
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1 INTRODUCTION
Privacy is a fundamental human right codified in the United Nations Universal Declaration of
Human Rights, which states that “no one shall be subjected to arbitrary interference with his
privacy, family, home or correspondence” [138, Art. 12]. However, it is difficult to define what
exactly privacy is. As early as 1967, Westin [147] defined privacy as “the ability of an individual to
control the terms under which personal information is acquired and used.” Personal information,
according to the EU General Data Protection Regulation (and the OECD privacy framework [109]),
is “any information relating to an [...] identifiable natural person” [51].

Nissenbaum [108] makes these definitions more practical and defines privacy in terms of contex-
tual integrity, where information is associated with a specific context (e.g., a hospital visit), and
social norms for this context dictate how information may be used or shared. A privacy violation is
then the use of personal information other than the norm allows. Although contextual integrity
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clearly defines when a privacy violation has occurred, it provides no protection mechanism other
than policy and regulations.

Privacy-enhancing technologies (PETs) protect privacy based on technology rather than policy,
and can thus offer much stronger protection. To judge the efficacy of PETs, privacy metrics are
needed that can measure the level of privacy in a system, or the privacy provided by a given
PET. A technical privacy metric takes properties of a system as an input (e.g., the amount of
sensitive information leaked or the number of users who are indistinguishable with respect to some
characteristic) and yields a numerical (or sometimes canonical) value, which allows to quantify
the privacy level in a system and subsequently the comparison of different PETs. Equally, the
parameters of some privacy methods can be regarded as privacy metrics, e.g. the k in k-anonymity
(see Section 5.3.1). Privacy metrics can be used in different contexts (or domains), and they can differ
with regard to the kind of adversary they consider, the data sources they assume to be available to
the adversary, and the aspects of privacy they measure.

Despite the large number of metrics in the literature, a structured and comprehensive overview
of privacy metrics does not yet exist. This makes informed decisions about which metrics to select
for the evaluation of PETs difficult. This in turn can lead to the choice of ineffective PETs, which is
worrisome considering the pervasiveness of systems that can violate privacy [49]. In this paper, we
structure the landscape of privacy metrics, focusing on technical metrics that measure the degree
of privacy in a system or the effectiveness of PETs. In detail, our contributions are as follows:

• We review conditions for the quality of privacy metrics (Section 2). These are essential as a
basis for an informed decision about privacy metrics.
• We describe a selection of privacy domains including communication systems and databases
to provide context and examples throughout the survey (Section 3).
• We identify four common characteristics that can classify privacy metrics (Section 4):
– Adversary models describe the capabilities the adversary is assumed to have.
– Data sources describe how the adversary might obtain the information a PET aims to
protect: from public data, observable data, re-purposed data, or other sources.

– Inputs describe what information is used to compute a metric: the adversary’s estimate,
resources available to the adversary, the true outcome, prior knowledge, and parameters.

– Output measures describe the properties that are measured by privacy metrics. Our tax-
onomy introduces eight categories: a) uncertainty, b) information gain or loss, c) data
similarity, d) indistinguishability, e) adversary’s success probability, f) error, g) time, and h)
accuracy/precision.

• We describe and classify over eighty privacy metrics in Section 5. We focus our selection
on popular metrics (in terms of citations) and metrics we found conceptually promising.
Where possible, we unify and simplify metric notation and, when appropriate, we discuss
advantages and disadvantages of metrics as well as application scenarios.
• We give recommendations on how to choose privacy metrics in Section 6. We structure our
recommendations along a series of questions, answers to which will highlight particularly
suitable metrics and narrow down the number of candidates.
• We identify areas for future work in Section 7. In particular, we believe that more work is
needed on metrics for interdependent privacy, combinations of metrics, and evaluations of
the quality of metrics.

In summary, we systematize the literature on privacy measurement. Our survey can thus serve
as a reference guide for privacy metrics and as a framework that enables privacy researchers to
make informed decisions on which metrics to choose in a particular setting. This will contribute to
the advancement of PETs and privacy protection in general.
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2 CONDITIONS FOR PRIVACY METRICS
There is no general consensus which conditions privacy metrics have to fulfill. In the mathematical
sense, a metric is a measure for the distance between two elements of a set and needs to fulfill
four conditions to qualify as a metric (non-negativity, identity of indiscernibles, symmetry, and
triangle inequality). However, many of the metrics discussed in this survey are not metrics in the
mathematical sense, as they do not fulfill all four conditions. Nevertheless, to remain consistent
with the literature (e.g., [10, 19, 21, 26, 33, 78, 102]), we will consider as privacy metrics all measures
that in some way describe the level of privacy.

Many authors have proposed requirements and recommendations for privacy metrics. For exam-
ple, Alexander and Smith [9] require that privacy metrics are understandable by mathematically
inclined laypeople, are orthogonal to cost and utility metrics, and give bounds on how effectively
the adversary can succeed in identifying individuals. Andersson and Lundin [10] require that
privacy metrics are based on probabilities (e.g., the probability of an adversary identifying a given
individual) and have well defined and intuitive endpoints. They argue that a metric should measure
privacy based on the number of individuals an adversary cannot distinguish and how evenly spread
the adversary’s guesses are.

In contrast to that, Syverson [135] requires that privacy metrics reflect how difficult it is for an
adversary to succeed, that they do not depend on variables that cannot be determined or predicted,
and that they reflect the resources needed for successful attacks on privacy instead of relying on
cardinalities or probabilities. Bertino et al. [19] require that privacy metrics indicate the privacy
level, the portion of sensitive data that is not hidden, and the data quality after application of
the PET. Shokri et al. [130] require that privacy metrics consider three aspects of the adversary’s
success: accuracy, uncertainty, and correctness.

In an earlier publication, we required that privacy metrics should be monotone with increasing
adversary strength [142]. While the discussed conditions in this section cannot be seen as strict
requirements for a measure to qualify as a privacy metric, they can serve as a guideline to increase
the strength, usability, and meaningfulness of newly proposed metrics.

3 PRIVACY DOMAINS
Privacy domains are areas where privacy-enhancing technologies (PETs) can be applied. With
the increasing use of information technology, PETs are being researched in a growing number of
domains. We describe six domains to provide context and examples for the remainder of the paper.

3.1 Communication Systems
The main privacy challenge in communication systems is anonymous communication, which aims
to hide which (or even that) two users communicated, not just the contents of their communication.
Maintaining the confidentiality of communication contents is an orthogonal problem that can be
solved via public-key encryption [27]. Adversaries typically try to identify either the sender of a
message, its receiver, or sender-receiver relationships. Metrics for communication systems have
been previously reviewed by Kelly et al. [78].

3.2 Databases
There are two typical scenarios in the database domain: in the interactive setting, users issue queries
to a database; in the non-interactive setting, a sanitized database is released to the public. In both
scenarios, adversaries attempt to identify individuals in the database and reveal sensitive attributes,
for example, health information contained in a patient record. Databases can include microdata
(i.e., information about individuals) or aggregate data that masks information about individuals,
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for example by presenting only the averages of multiple values. Surveys that review metrics for
this domain include Fung et al. [58], Shabtai et al. [123], Xu et al. [154] (privacy preserving data
publishing), Bertino et al. [19] (data mining), and Kelly et al. [78] (databases).

3.3 Location-based Services
Location-based services provide context-aware services to mobile users, such as information about
nearby points of interest. Adversaries with access to location information can infer sensitive
attributes like home and work locations, and create movement profiles that can be sold or used
for marketing purposes. Metrics for location privacy are discussed by Shokri et al. [129] and
Krumm [83]. In previous work, we reviewed metrics for vehicular networks [143].

3.4 Smart Metering
Smart meters record fine-grained electricity consumption data in a user’s home and send this data
to the energy provider. The energy provider can use this data for billing and network optimization,
but can also act as an adversary who infers behavioral profiles above and beyond the stated purpose.
Metrics and mechanisms for smart metering are reviewed by Zeadally et al. [159].

3.5 Social Networks
Social networks allow users to share updates about their daily lives. Adversaries in this domain try
to identify users in anonymized social graphs, or infer sensitive attributes from private profiles.
Yang et al. [155] survey privacy risks in social networks.

3.6 Genome Privacy
Advances in whole genome sequencing have raised new questions regarding the privacy of a
person’s genome. The genome uniquely identifies an individual, and at the same time reveals highly
sensitive information, like susceptibility to diseases. An adversary with access to genomic data
could engage in genetic discrimination (e.g., denial of insurance) or blackmail (e.g., planting fake
evidence at crime scenes). In previous work, we reviewed privacy metrics for genomics [141].

4 CHARACTERISTICS OF PRIVACY METRICS
Despite their diversity, privacy metrics share common characteristics. Here, we describe four
characteristics that can classify privacy metrics and can thus serve as an initial guideline for
choosing privacy metrics for specific scenarios (we give detailed recommendations in Section 6).

4.1 Adversary Goals
The goal of privacy metrics is to quantify the level of privacy in a system or the privacy provided
by a PET, often under consideration of a specific adversary. The adversary aims to compromise
users’ privacy and to learn sensitive information. This sensitive information can be user identities
(e.g. by deanonymizing data sets), user properties (e.g. location or energy consumption), or both
[64]. It is therefore important to select metrics that are able to measure the relevant aspect. For
example, a metric in location-based services can indicate whether the adversary can identify a user,
given a location (identity hiding), or whether the adversary can identify the location, given a user
(property hiding). We indicate which metrics are suitable to measure identity or property hiding in
Tables 10 and 11 (pages 32 and 33, column Identity/Property). The distinction between identity and
property hiding can be blurry because it depends on the adversary and the employed PET, and
because metrics that were originally proposed for one setting are often applied in other settings as
well. Therefore, a missing entry in Tables 10 and 11 does not necessarily mean that a metric cannot
be applied, only that, to the best of our knowledge, no research has done so.
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4.2 Adversary Capabilities
Naturally, a stronger adversary, such as one with more resources or prior knowledge, might be
able to attack privacy more successfully. The value of a privacy metric therefore depends on the
adversary model, and evaluating a PET with a weak adversary model can lead to an overestimation
of privacy. Essentially, PETs that provide protection against a stronger adversary model can give
stronger privacy guarantees. As a result, metrics can only be used to compare two different PETs if
they use the same adversary model.
Metrics that do not account for any type of adversary implicitly assume an adversary with

limited capabilities. For example, metrics that measure privacy purely based on certain properties
of data assume that every attack on the system will only rely on these properties. Attacks that
exploit other properties of the data may be able to disclose sensitive information nevertheless.
The literature reflects the importance of adversary models by considering adversaries with

diverse characteristics. To allow for a better interpretation of the outcome of privacy metrics,
studies should always include a detailed description of the used adversary model. To this end, we
extend the taxonomy of adversary types described by Diaz et al. [39] (and later refined in Diaz [38]),
and classify adversaries as follows:

4.2.1 Local–Global. Local adversaries can only act on a restricted part of the system, for example
a geographical location or a subset of nodes. Global adversaries have access to the entire system.

4.2.2 Active–Passive. Active adversaries can interfere with the system by adding, removing or
modifying information or communication. Passive adversaries can only read and observe.

4.2.3 Internal–External. Internal adversaries are part of the system, for example servers provid-
ing location-based services, energy providers in smart metering, or third parties controlling nodes
in the system. External adversaries are not part of the system, but are able to attack it, e.g., via
shared communication links or publicly available data.

4.2.4 Static–Adaptive. Static adversaries choose which strategy and resources to use prior to
an attack and stick to their choice irrespective of how the attack progresses. Adaptive adversaries
can adapt their strategy while the attack is ongoing, e.g., by learning system parameters through
observation.

4.2.5 Prior Knowledge. Some adversaries may have additional knowledge about the system,
such as general domain-specific knowledge – knowledge about the world – or scenario-specific
knowledge, for example in the form of a prior probability distribution or specific information about
users in the system, such as their home and work addresses. Prior information can considerably
strengthen the adversary, and thus it is important that privacy metrics can account for it.

4.2.6 Resources. Adversaries can also be classified according to the resources available to them.
For computational resources, efficient adversaries are restricted to probabilistic polynomial time
(PPT) algorithms, while unbounded adversaries are not restricted to any computational model.
Other types of resources include the bandwidth or number of malicious nodes available to the
adversary [101].

4.3 Data Sources
Data sources describe which data needs to be protected, and how the adversary is assumed to gain
access to the data. We indicate the primary data sources for each metric in Tables 10 and 11 (pages
32 and 33, column Primary data source).
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4.3.1 Published Data. Published data refers to information that has been willingly and per-
sistently made available to the public. This includes statistical databases as well as information
individuals choose to disclose, e.g., on social networks. In both cases, adversaries attempt to identify
anonymized individuals or reveal sensitive attributes.

4.3.2 Observable Data. Observable data is transient information that requires the adversary to
be present in order to gain access to it. This category includes information that can be obtained
by a passive adversary who can access data without compromising the underlying system. In
communication systems, for example, adversaries overhear communications to identify message
senders and receivers.

4.3.3 Re-purposed Data. Re-purposed data is used for a different purpose than the purpose for
which it was initially acquired. Examples are service providers who obtain user information to
offer location-based services, smart metering, or social networks, but then use this information for
purposes other than providing the service. Having access to non-public user information (regardless
of the users’ privacy setting) allows for tailored advertising and other forms of marketing or
monetization.

4.3.4 All Other Data. All other data refers to information that was not made public, was not
observable and that the adversary was not intended to have access to. This data is typically not
anonymized or protected, and can be obtained using methods such as wiretapping, hacking into a
system, blackmailing, or buying off the black market. Implications for users can be severe, including
financial losses and publication of medical records or confidential communication. PETs are often
not deployed by the original owner as they can make it less convenient to work with the data.

4.4 Inputs for Computation of Metrics
Privacy metrics rely on different kinds of input data to compute privacy values. The availability of
input data or appropriate assumptions determine whether a metric can be used in a specific scenario.
We indicate which of the input categories each metric relies on in Tables 10 and 11 (column group
Inputs).

4.4.1 Adversary’s Estimate. The adversary’s estimate is the result of the adversary’s effort to
breach privacy. It often takes the form of a posterior probability distribution. For example, in a
communication system the estimate can describe how likely each user is to have sent a message.
In smart metering, the estimate can describe how much energy a user is likely to have consumed
during a specific time period.

4.4.2 Adversary’s Resources. The resources available to the adversary can be given, for example,
in terms of computational power, time, bandwidth, or physical nodes (see Section 4.2.6).

4.4.3 True Outcome. The true outcome, or ground truth, is often used to judge how good the
adversary’s estimate is. However, this information is not available to the adversary, so they cannot
compute metrics that use the true outcome. For example, in location-based services the true outcome
corresponds to a user’s true location, and in social networks it corresponds to the true connections
in a social graph. The ground truth is usually assumed to describe sensitive data.

4.4.4 Prior Knowledge. Prior knowledge describes concrete, scenario-specific knowledge that
the adversary has. It usually takes the form of a prior probability distribution. In genome privacy,
for example, prior knowledge can include information about a user’s population group, which
influences how likely a user is to have specific genetic variations.
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4.4.5 Parameters. Parameters configure privacy metrics. They describe threshold values, the
sensitivity of attributes, which attributes are sensitive, or desired privacy levels.

4.5 Output Measures
The output of a privacy metric refers to the kind of property that a privacy metric measures. We
introduce a taxonomy with eight output properties, each of which represents a different aspect of
privacy. This is an important categorization because it shows that a single metric cannot capture
the entire concept of privacy. A more complete estimate of privacy can only be obtained by using
metrics from different output categories.

Figure 1 gives an overview of the output measures and the metrics associated with each.
While there exist many possible categorizations for metrics, e.g., based on domain or data source,

we believe that a classification based on the output is the most intuitive. We note that, as for any
classification, the boundaries between categories can be blurred and some metrics could also be
assigned to other categories. For example, Bezzi [21] describe metrics from the data similarity
category in terms of metrics from the uncertainty and information gain/loss categories, and Soria-
Comas and Domingo-Ferrer [132] showed that data similarity metrics can be related with metrics
from the indistinguishability category. In this survey, we assigned metrics to the output which they
seem to measure the most directly.

4.5.1 Uncertainty. Uncertainty metrics assume that high uncertainty in the adversary’s estimate
correlates with high privacy, because the adversary cannot base his guesses on information known
with certainty. However, even guesses based on uncertain information can be correct, and thus
individual users may suffer privacy losses even in scenarios with a highly uncertain adversary.

4.5.2 Information Gain or Loss. Metrics that measure information gain or loss quantify the
amount of information gained by the adversary, or the amount of privacy lost by users due to the
disclosure of information.

4.5.3 Data Similarity. Data similarity metrics measure similarity either within a dataset, for
example by forming equivalence classes, or between two sets of data, for example between a private
dataset and its public, sanitized counterpart. These metrics abstract away from an adversary and
focus on the properties of the data. For example, similarity can refer to the frequencies of data
values, numerical similarity, or the (lack of) variation in published data.

4.5.4 Indistinguishability. Indistinguishability is a classic notion in the security community.
Metrics based on indistinguishability analyze whether the adversary is able to distinguish between
two outcomes of a privacy mechanism. Privacy is high if the adversary cannot distinguish between
any pair of outcomes. Metrics in this category are usually binary; they indicate whether two
outcomes are indistinguishable or not, but do not quantify the privacy levels in-between.

4.5.5 Adversary’s Success Probability. Metrics using the adversary’s success probability to quan-
tify privacy indicate how likely it is for the adversary to succeed in any one attempt, or how often
they would succeed in a large number of attempts. Low success probabilities correlate with high
privacy. While this assumption holds for an averaged population of users, an individual user may
still suffer a loss of privacy even when the adversary’s success probability is low.

4.5.6 Error. Error-based metrics measure how correct the adversary’s estimate is, for example
using the distance between the true outcome and the estimate. High correctness and small errors
correlate with low privacy.
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Fig. 1. Taxonomy of privacy metrics, classified by output

4.5.7 Time. Time-based metrics either measure the time until the adversary’s success, or the
time until the adversary’s confusion. In the first case, metrics assume that the adversary will succeed
eventually, and so a longer time correlates with higher privacy. In the second case, metrics assume
that the privacy mechanism will eventually confuse the adversary, and so a shorter time correlates
with higher privacy.

4.5.8 Accuracy or Precision. These metrics quantify how precise the adversary’s estimate is
without considering the estimate’s correctness. More precise estimates correlate with lower privacy.
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5 PRIVACY METRICS
We now describe over eighty privacy metrics from the literature, grouped by the outputs they
measure1. Where possible, we point out their advantages or disadvantages, point out similarities or
differences between related metrics, and give examples for application scenarios. We also simplify
and unify metric notation (see Table 1), however, we did not alter notation that occurs in a metric’s
name (e.g., t-closeness or (X ,Y )-Privacy).

At the end of the section, Tables 10 and 11 summarize how each metric can be classified according
to the characteristics introduced in Section 4. The tables also provide information about value
ranges, and an indication whether higher or lower values represent better privacy. We will refer to
Tables 10 and 11 again in Section 6, when we give recommendations on how to select metrics.

Table 1. Unified notation for all privacy metrics in this paper

B Base metric
d () Distance function
D Database or database table
E Equivalence class
H (·) Entropy
I (·; ·) Mutual Information
K Privacy mechanism
L Locations
M Messages, requests
p (x ) Equivalent to p (X = x )
q Quasi-identifiers
R Regions
S Sensitive values or sets of query responses (differential privacy)
T Time
T⃗ Time series
U Set of users u ∈ U
V Genetic variations (or SNPs)
X Discrete random variable that represents the adversary’s estimated probabilities for

each member of the anonymity set
X ∗ True distribution of (hidden) data
Y Data observed by the adversary (which may be obfuscated)
Z Prior information
β () Loss function
τ Thresholds
ω Weights

5.1 Uncertainty
Uncertaintymetrics assume that an adversarywho is uncertain of his estimate cannot breach privacy
as effectively as one who is certain. Many uncertainty metrics build on entropy, an information-
theoretic notion to measure uncertainty [124]. Most metrics in this category originate from the
communication domain, where, for example, they can be used to assess an adversary’s uncertainty
of associating different users and messages. In location-based services, they have been applied to
measure the uncertainty of an adversary in associating a user with a location or to distinguish
between different users.

1For the first read, we suggest to only focus on the first 2-3 metrics in each category. This will provide an understanding of
the most important metrics in each category as well as the differences between categories.
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Table 2. Metrics and references in the uncertainty category and the domains they originated in

Section Metric Original Domain Reference

5.1.1 Anonymity set size Communication [27]
5.1.2 Entropy Communication [121]
5.1.3 Rényi entropy Communication [33]
5.1.3 Max-entropy (Hartley) Communication [33]
5.1.3 Min-entropy Communication [33]
5.1.4 Normalized entropy Communication [39]
5.1.5 Degree of unlinkability Communication [133]
5.1.6 Quantiles on entropy Communication [33]
5.1.7 Conditional entropy Communication [40]
5.1.8 Conditional privacy Databases [5]
5.1.8 Inherent privacy Databases [5]
5.1.9 Cross-entropy Databases [98]
5.1.10 Cumulative entropy Location [57]
5.1.11 Protection level Location [153]
5.1.12 Asymmetric entropy Genome privacy [15]
5.1.13 Genomic privacy Genome privacy [14]
5.1.14 User-centric privacy Location [56]

5.1.1 Anonymity Set Size. The anonymity set for an individual u, denoted ASu is the set of users
that the adversary cannot distinguish from u [27, 80]. It can be seen as the size of the crowd into
which the target u can blend.

privASS ≡ |ASu |

Instead of users, anonymity sets can also be applied to locations [44], location pairs (e.g.,
home/work) [61], or radio frequency identification (RFID) devices [65]. As a result of its sim-
plicity, the anonymity set size is widely used in the literature.
The main criticism of the anonymity set size is that it only depends on the number of users

in the system. This means that it does not take into account prior knowledge, information the
adversary has gathered by observing the system, or how likely each member of the anonymity set
is to be the target [39, 121]. However, it can be argued that the size of the anonymity set is useful
in combination with other metrics such as normalized entropy (Section 5.1.4) [133].

5.1.2 Entropy. Shannon entropy is the basis formany othermetrics. In general, entropymeasures
the uncertainty associated with predicting the value of a random variable. As a privacy metric, it
can be interpreted as the effective size of the anonymity set, or as the number of bits of additional
information the adversary needs to identify a user [121].
For example, the adversary may be interested in identifying which member of the anonymity

set took a specific action, e.g., who sent a particular message, or who visited a particular location.
The adversary would then estimate a probability p (x ) for each member x of the anonymity set ASu
which indicates the likelihood that x is the targeted user u (ensuring that

∑
x ∈ASu p (x ) = 1). To

use the entropy metric, it does not matter how the adversary estimates p (x ). Attacks could, for
example, be based on Bayesian inference, random guessing, prior knowledge, or a combination of
methods.

More generally, each value {x1, ...,xn } of the discrete random variable X represents a member of
the anonymity set and p (xi ) is the (estimated) probability of this member to be the target. Then,
the entropy of X can be expressed as:
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privENT ≡ H (X ) = −
∑
x ∈X

p (x ) log2 p (x )

Entropy has also been used in cases where privacy is measured at more than one point in time,
for example in location privacy, where the adversary tracks users during a period of time. In this
case, entropy is computed at every point in time, and the underlying probabilities are updated after
each timestep using Bayesian belief tables [92]. After the first timestep, this accounts for the prior
knowledge the adversary has acquired during previous timesteps.

Many papers argue against the use of entropy as a privacy metric. Entropy is strongly influenced
by outlier values, i.e., users in the anonymity set that are very unlikely to be the target [33]. Even
if an adversary is able to identify a target with high probability, the remaining low probability
members of the anonymity set can still lead to high values of entropy and thus indicate high
privacy [137]. It is easy to construct different probability distributions that yield the same entropy
value, for example a uniform distribution over 20 users, and an almost uniform distribution over 101
users where one user has a probability of 1

2 [101, 137]. This makes it difficult to compare different
systems.

In the case of location privacy, entropy measures how well an adversary can disclose the position
of a user. However, if two positions are very close to each other, locations may be revealed despite
high entropy [66].

Although entropy has an intuitive interpretation as the number of additional bits of information
the adversary needs, it can be argued that the absolute value of entropy does not convey much
meaning [62]. Entropy gives an indication of the adversary’s uncertainty, but does not state how
correct or accurate the adversary’s estimates are [130]. For example, the adversary could be certain
but wrong (low correctness) if the estimate indicates that the wrong member of the anonymity set is
the target. The adversary could also be certain but with low accuracy if the confidence intervals for
the estimated probabilities are very large. Low certainty is usually correlated with low correctness,
but otherwise, correctness and certainty are not correlated [130]. Entropy also does not indicate
how many resources (e.g. in terms of computation or bandwidth, see Section 4.2.6) the adversary
has to expend to succeed [102, 135].

5.1.3 Rényi Entropy. Rényi entropy is a generalization of Shannon entropy that also quantifies
the uncertainty in a random variable. It uses an additional parameter α , and Shannon entropy is
the special case with α → 1.

privRE ≡ Hα (X ) =
1

1 − α
log2
∑
x ∈X

p (x )α

Hartley entropy H0 or max-entropy is the special case with α = 0. It depends only on the number
of users and is therefore a best-case scenario because it represents the ideal privacy situation for
a user. Min-entropy H∞ is the special case with α = ∞ which is a worst-case scenario because it
only depends on the user for whom the adversary has the highest probability [33].

privMXE ≡ H0 (X ) = log2 |X | = log2 privASS
privMNE ≡ H∞ (X ) = − log2 max

x ∈X
p (x )

5.1.4 Normalized Entropy (Degree of Anonymity). Because the value range of entropy depends
on the number of elements in the anonymity set, the absolute value cannot always be used to
compare entropy values. This is why entropy is frequently normalized using Hartley entropy (i.e.,
the maximum value entropy takes when all elements in the anonymity set are equally likely).
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Normalized entropy can be interpreted as the amount of information the system is leaking [39].

privNE ≡
H (X )

H0 (X )

5.1.5 (Degree of) Unlinkability. Unlinkability measures the adversary’s uncertainty about which
items are related, for example which users are related by anonymous communication. In this case,
the adversary does not assign probabilities to members of the anonymity set, but to the relationships
between them. The set of partitions Π of users U contains all possible relationships. Unlinkability
is then computed as the entropy over the set of partitions Π [133].

privDUE ≡ H (Π) = −
∑
π ∈Π

p (π ) log2 p (π )

The degree of unlinkability takes into account the prior knowledge of an adversary by computing
the ratio of unlinkability for an adversary with (H (ΠZ )) and without (H (Π)) prior knowledge [55].

privDUP ≡
H (ΠZ )

H (Π)

Using a ratio to compute the degree of unlinkability makes sure that the values represent the degree
of unlinkability, i.e., the metric is in the range [0,1], and indicates the portion of unlinkability that
remains even if the adversary has prior knowledge. Other options to account for prior information
are taking the difference (see increase in adversary’s belief, Section 5.2.12) or the conditional entropy
(see Section 5.1.7).

5.1.6 Quantiles on Entropy. Quantiles on entropy compute the entropy of a chosen percentile of
the random variable X . To account for the fact that entropy is strongly influenced by outlier values
and to avoid overestimating the level of privacy, this metric ignores all members x ∈ X whose
assigned probability p (x ) is smaller than the threshold τ [33].

privQE ≡ H (X̂ ), where X̂ = {x : x ∈ X ,p (x ) ≥ τ }

5.1.7 Conditional Entropy. The conditional entropy, or equivocation, of a random variable X ∗,
given a random variable Y , measures how much information is needed to describe X ∗ if the value
of Y is known. The random variable X ∗ represents the true distribution, for example a sender’s true
sending profile (in communications) or the true distribution of a data attribute (in databases). Y can
then be taken to describe the adversary’s observations, for example information about messages in
a communications network [40], or a perturbed data release [5]. However, care must be taken to
distinguish conditional entropy from the entropy of a conditional probability distribution [40].

privCOE ≡ H (X ∗ |Y ) = −
∑
y∈Y

∑
x ∗∈X ∗

p (y,x∗) log2 p (x
∗ |y)

Normalized conditional entropy uses the entropy of X ∗ (because entropy is the maximum of
conditional entropy) to normalize conditional entropy [84].

privNCE ≡
H (X ∗ |Y )

H (X ∗)

5.1.8 Inherent Privacy. Inherent privacy (also called scaled anonymity set size) is derived from
entropy and describes the privacy inherent in the random variable X as the number of possible
outcomes given the expected amount of binary questions the adversary needs to answer [5, 10].

privIP ≡ 2H (X )
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In a similar way, conditional privacy is based on conditional entropy and measures the privacy
inherent in a random variable X , given random variable Y [5].

privCP ≡ 2H (X |Y )

5.1.9 Cross-entropy / Likelihood. In data clustering, cross-entropy measures the uncertainty in
predicting the original dataset from the clustered model [98]. Generally, cross-entropy measures
the amount of information needed to identify an object in the data set if the original data are coded
in terms of the model’s distribution X , rather than their true distribution X ∗. Cross-entropy is
derived from entropy, which indicates the uncertainty in a probability distribution (Section 5.1.2),
and the relative entropy DKL, which indicates the distance between two probability distributions
(Section 5.2.2).

privCE ≡ H (X ∗) + DKL (X
∗ | |X )

5.1.10 Cumulative Entropy. In location privacy, cumulative entropy measures howmuch entropy
can be gathered on a route through a series of independent mix zones. A mix zone R is a region
where several nodes are close to each other at the same time, such that the adversary cannot
distinguish the nodes as they leave the mix zone in different directions. Cumulative entropy adds
up the entropy gathered in each mix zone r on a node’s path [57]. Xr indicates the adversary’s
estimate at the time when the user is in mix zone r .

privCUE ≡
∑
r ∈R

H (Xr )

5.1.11 Protection Level. The protection level is a metric from location privacy which is based on
the popularity of regions r ∈ R. The popularity of a region r with respect to a set of users, Pop(r ,U ),
is defined as the inherent privacy (Section 5.1.8) computed over the frequencies f rU of location
samples from all users in this region. A user u in the system can specify a public reference region
r refu to define how private they want to be. The protection level is then the ratio of the average
popularity of all regions Ru along the user’s trajectory (with respect to the set of users Û common
to all these regions) and the popularity of the reference region [153]. A protection level of at least 1
indicates adequate protection.

privPL ≡

∑
r ∈Ru Pop(r ,Û )

|Ru |Pop(r refu ,U )
, where Pop(r ,U ) = 2H (f rU )

5.1.12 Asymmetric Entropy. When the adversary has access to prior information about the
distribution of the random variable X , the point α where uncertainty is highest can differ from
equiprobability. For example, in genomics, information about the population-wide average proba-
bilities of genetic variations are readily available and determine where the adversary’s uncertainty
is highest. In this case, asymmetric entropy can be used instead of entropy to account for this prior
information [15, 94]. Asymmetric entropy uses p (x ) as the adversary’s probability of inferring the
target correctly, and does not take into account individual probabilities for the other members of
the anonymity set.

privAE ≡
p (x ) (1 − p (x ))

(−2α + 1)p (x ) + α2

In genomic privacy, asymmetric entropy can be applied to each genetic variation separately
(with separate parameters αi ) and then summed up to give cumulative asymmetric entropy (similar
to cumulative entropy in Section 5.1.10).
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5.1.13 Genomic Privacy. Genomic privacy assumes that the adversary has estimated probabilities
for all genetic variations V (so-called single nucleotide polymorphisms, or SNPs) that occur in a
person’s genome. Most SNPs have two variants, one of which is less common than the other in
human populations. The metric uses the probabilities for the cases where a SNP v is present with
the less common variant and weights these probabilities with a rating ωv of each SNP’s severity,
which indicates, for example, how much a SNP contributes to a disease [14]. The value of genomic
privacy does not have an intuitive interpretation and depends strongly on the number of SNPs
studied and the magnitude of the severities.

privGP ≡ −
∑
v ∈V

log2 (p (v has less common variant)) · ωv

5.1.14 User-centric Privacy. User-centric privacy assumes that the privacy of a user decreases
linearly over time with speed ω. This decay can be expressed through the privacy loss function
β (∆t ), with ∆t being the time elapsed since t ′, the time of the last successful activation of a privacy
protection mechanism [56]. This metric makes use of a base privacy metric B, with Bt ′ giving the
level of privacy enjoyed by the user at time t ′. To avoid a negative level of privacy, the metric is
capped at zero. Note that for base metrics where lower values indicate higher privacy, the privacy
loss function β (∆t ) has to be added to the base metric instead of subtracting it.

privUCP ≡ max(0,Bt ′ − β (∆t ))
β (∆t ) = ω · ∆t , ∆t ≥ 0

User-centric privacy assumes a linear decay of privacy, which may not hold for all base metrics.
In addition, the metric assumes that successive activations of a privacy mechanism are independent
from each other.

5.2 Information Gain or Loss
Metrics in this category measure the amount of information an adversary can gain, assuming that
privacy is higher the less information an adversary can obtain. Similar to uncertainty metrics, many
information gain metrics are based on information theory. However, information gain metrics
explicitly consider the amount of prior information.
While frequently used in the context of communication systems or databases, metrics in this

category have found wide application across all domains, including genome privacy, smart metering,
and social networks.

5.2.1 Amount of Leaked Information. This metric counts the information items S disclosed by a
system, e.g., the number of compromised users [17] or the number of leaked DNA base pairs [146].
However, this metric does not indicate the severity of a leak because it does not account for the
sensitivity of the leaked information.

privALI ≡ |S |

5.2.2 Relative Entropy. Relative entropy (also called Kullback-Leibler divergence DKL) measures
the distance between two probability distributions. The two distributions must fulfill absolute
continuity, i.e. if q(x ) = 0, then p (x∗) = 0 as well. As a privacy metric, the two distributions usually
represent the true distribution X ∗ and the adversary’s estimate X , and relative entropy gives the
amount (bits) of probabilistic information revealed to the adversary [37]. For example, in a location
privacy scenario, the adversary may aim to find out which points of interest a user has visited.
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Table 3. Metrics and references in the information gain/loss category and the domains they originated in

Section Metric Original Domain Reference

5.2.1 Amount of leaked information Social networks [17]
5.2.2 Relative entropy Communication [37]
5.2.3 Mutual information Genome privacy [89]
5.2.3 Normalized mutual information Genome privacy [71]
5.2.4 Conditional privacy loss Databases [5]
5.2.5 Conditional mutual information Communication [34]
5.2.6 (Relative) Loss of anonymity Communication [25]
5.2.7 Maximum information leakage Databases [43]
5.2.8 System anonymity level Communication [60]
5.2.9 Information surprisal Social networks [29]
5.2.10 Privacy score Social networks [91]
5.2.11 Positive information disclosure Databases [99]
5.2.12 Increase in adversary’s belief Databases [104]
5.2.13 Reduction in observable features Smart metering [96]
5.2.14 Pearson’s correlation coefficient Smart metering [82]
5.2.15 Full/Partial disclosure Databases [79]

Relative entropy then indicates how far the adversary’s estimate is from the truth.

privRLE ≡ DKL (X
∗ | |X ) =

∑
x,x ∗

p (x∗) log2
p (x∗)

q(x )

Instead of the adversary’s estimate X , some applications of relative entropy use the adversary’s
observations Y , for example of obfuscated data in smart metering [75]. In this case, relative entropy
indicates how far the distribution of obfuscated data is from the true distribution.

5.2.3 Mutual Information. Mutual information quantifies how much information is shared
between two random variables. It can be computed as the difference between entropy (Section 5.1.2)
and conditional entropy (Section 5.1.7). In most cases, mutual information is computed between
the true distribution of data X ∗ and the adversary’s (obfuscated) observations Y , and it measures
the amount of information leaked from a privacy mechanism [89].

privMI ≡ I (X ∗;Y ) = H (X ∗) − H (X ∗ |Y ) =
∑

x ∗∈X ∗

∑
y∈Y

p (x∗,y) log2
p (x∗,y)

p (x∗)p (y)

To allow comparisons between scenarios, mutual information between X ∗ and Y can be normal-
ized using the entropy of X ∗. This can be interpreted as the degree of dependence between hidden
data X ∗ and observed data Y [71].

privNMI ≡ 1 −
I (X ∗;Y )
H (X ∗)

Alternatively, mutual information can be normalized using the number of entries inX ∗, for example
the number of rows in a database. In this case, normalized mutual information measures the number
of bits leaked on average from any entry [120].

5.2.4 Conditional Privacy Loss. Another way of normalizing mutual information is the con-
ditional privacy loss, which measures the fraction of privacy of X ∗ which is lost by revealing
Y [5].

privCPL ≡ 1 − 2−I (X
∗;Y )

ACM Computing Surveys, Vol. 51, No. 3, Article 57. Publication date: June 2018.



57:16 Isabel Wagner and David Eckhoff

5.2.5 Conditional Mutual Information. Mutual information can also be applied when the ad-
versary has access to prior knowledge. Conditional mutual information measures the amount of
information about X ∗ that can be learned by observing Y , given prior knowledge Z . It measures
the correlation between X ∗ and Y given Z [34].

privCMI ≡ I (X ∗;Y |Z ) = H (X ∗ |Z ) − H (X ∗ |Y ,Z )

5.2.6 (Relative) Loss of Anonymity. Loss of anonymity describes the amount of information
that can be learned about a set of anonymous events X ∗, given a set of observed events Y , for
the least private distribution of X ∗ [25]. In an anonymity protocol for example, X ∗ indicates a
user’s sending profile and p (y |x∗) describes the probability that the output y is produced by the
anonymity protocol, given a specific user input x∗. To characterize the worst-case behavior of the
anonymity protocol, the metric computes the maximum mutual information (Section 5.2.3), i.e.,
the maximum amount of information that can leak from the anonymity protocol, over all possible
distributions of user sending profiles.

privLA ≡ max
p (x ∗ )

I (X ∗;Y )

Relative loss of anonymity extends loss of anonymity by taking into account that the adversary
has access to certain revealed information Z . Instead of mutual information, this metric is based on
conditional mutual information (Section 5.2.5) and indicates the maximum amount of information
that can leak from a privacy mechanism over all distributions of anonymous events X ∗, given
observations Y and prior knowledge Z .

privRLA ≡ max
p (x ∗ )

I (X ∗;Y |Z )

5.2.7 Maximum Information Leakage. Maximum information leakage modifies mutual infor-
mation to consider only a single realization of the random variable Y . It quantifies the maximum
amount of information about private events or dataX ∗ that can be gained by an adversary observing
a single outputy, where the maximum is taken over all possible outputs [43]. In communications, for
example, maximum information leakage can refer to the amount of information the adversary gains
by observing a single message, taking the maximum information gain over all possible messages
that the adversary could observe.

privMIL ≡ max
y∈Y

I (X ∗;Y = y)

5.2.8 System Anonymity Level. In anonymous communication, the system’s anonymity level
describes the amount of additional information needed to reveal all sender-receiver relationships.
Sender-receiver relationships are described in the adjacency matrix A. Among all possible combi-
nations between senders and receivers, the adversary aims to find the correct combination that
corresponds to the messages sent in a communication round. If each sender/receiver can only
send/receive one message, then the number of combinations that the adversary has to choose from
is the permanent of the adjacency matrix per (A), and the adversary’s estimated probability for
each combination would be p (x ) = 1

per (A) . Multiplicities on the sender or receiver side (i.e. one
sender sending multiple messages, or a receiver receiving multiple messages) partition the possible
combinations into equivalence classes E. The cardinality |E | of each equivalence class indicates
how many combinations it contains. The adversary’s estimate thus improves depending on the
cardinalities: p (x ) = |E |

per (A) . The system anonymity level then computes the entropy based on this
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adversary estimate and normalizes with the number of users |U | [60].

privSAL ≡



0, if |U | = 1
1

log( |U |!)H ( |E |
per (A) ), if |U | > 1

5.2.9 Information Surprisal. Information surprisal is a measure of self-information. It quantifies
how much information is contained in a specific outcome x of a random variable X . In social
networks, X represents user profiles that contain a set of attributes, and p (x ) is the frequency of a
specific user’s combination of attribute values within the set of all social network users. Information
surprisal measures how surprised the adversary would be upon learning the user’s attributes [29].

privIS ≡ − log2 p (x )

5.2.10 Privacy Score. The privacy score in a social network indicates a user u’s potential privacy
risk. It increases with the sensitivity ωx ∗ of information items x∗ ∈ X ∗ and their visibility Vis(x∗,u),
e.g., the number of users knowing about each item [91]. Any information on a user’s profile can
be an information item, for example the user’s gender or mother’s maiden name. To make the
privacy score comparable between users, the sensitivityωx ∗ is independent of the user (for example,
computed from the privacy settings of a large number of users).

privPS ≡
∑

x ∗∈X ∗
ωx ∗ · Vis(x∗,u)

5.2.11 Positive Information Disclosure. Shannon’s criterion for perfect secrecy [125] demands
that the adversary’s prior probability for the secret x∗ equals the posterior probability that takes
into account a new observation y, i.e. p (x∗) = p (x∗ |y), expressing that the adversary gains no
additional information. (For encryption, it has been shown that the one-time pad is the only cipher
that satisfies perfect secrecy). Building on Shannon’s perfect secrecy, the positive information
disclosure metric [99] quantifies how much the adversary’s posterior probability improves. The
metric indicates the highest improvement across all secrets x∗.

privPID ≡ sup
x ∗∈X ∗

p (x∗ |y) − p (x∗)

p (x∗)

In location privacy, for example, the secret is the path that a user travels on, and new observations
are geographic locations disclosed to the adversary [54].

5.2.12 Increase in Adversary’s Belief. The increase in adversary’s belief measures the difference
between the adversary’s prior and posterior probabilities (e.g., of identifying an individual in a set
of users). Privacy is breached if this difference is greater than the privacy parameter τ [105].

privIAB ≡ τ , where p (x |y) − p (x ) > τ

5.2.13 Reduction in Observable Features. In smart metering, load hiding algorithms try to hide
load transitions from the energy provider, because these can disclose at what time which appliance
was used. The reduction in observable features measures how many transitions are hidden success-
fully by a privacy protection mechanism [96]. Load transitions form a time-series T⃗ , and the feature
mass F (T⃗ ) condenses this time series to a single value, for example the number of transitions in T⃗
with a certain property, such as a minimum power level. The metric then relates the feature masses
with (T⃗Y ) and without (T⃗X ∗ ) privacy protection.

privROF ≡
F (T⃗Y )

F (T⃗X ∗ )
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5.2.14 Pearson’s Correlation Coefficient. In statistics, Pearson’s correlation coefficient measures
the degree of linear dependence between two random variables. It is computed as the covariance
between X ∗ and Y , normalized with the standard deviations σX ∗ and σY . In smart metering, this
can be used to measure the correlation between original and obfuscated load data [82].

privPCC ≡
cov (X ∗,Y )

σX ∗ · σY

5.2.15 Full/Partial Disclosure. In query auditing, full disclosure indicates whether a set of data-
base queries uniquely determines a sensitive value [103]. For example, if a database only permits
aggregate queries to protect sensitive values, then a series of sum queries may allow to infer
sensitive values. However, the full disclosure metric has important limitations. For example, if the
adversary can infer that a sensitive value falls in a small interval, then full disclosure would not
be violated because the sensitive value was not uniquely determined, but privacy may be violated
nevertheless [79].

Partial disclosure addresses these limitations and is also applicable to online query auditing, i.e.,
the problem whether a new query should be answered or not, given a set of past database queries
and answers. The partial disclosure metric bounds the change in the adversary’s confidence of
inferring sensitive values. Specifically, a series of queries q and query responses y is called τ -Safe
with regard to a particular numeric sensitive value si and an interval Int if this change in confidence
is below a threshold τ .

privPD ≡ Safeτ ,i,Int =



1, if 1
1+τ ≤

p (si ∈Int |q1, ...,qt ,y1, ...,yt )
p (si ∈Int )

≤ (1 + τ )
0, otherwise

To apply this metric, the Safe predicate has to hold for all sensitive items and all intervals. This
AllSafe predicate can then be used to define the adversary’s success, and an auditing mechanism
is called private if the probability for the adversary’s success is below a threshold τ ′ [79]. This
definition assumes that both adversary and auditor hold the same information about the distribution
of sensitive values in the database.

5.3 Data Similarity
Data similarity metrics measure properties of observable or published data. They are usually
independent of the adversary and derive the privacy level solely from the features of disclosed data.
Almost all of these metrics originate from the database domain, where they are commonly applied
in the context of data sanitization and data publishing.

5.3.1 k-Anonymity. k-Anonymity is conceptually similar to the size of the anonymity set (Sec-
tion 5.1.1), but does not consider the adversary. It was originally proposed to prepare statistical
databases for publication. A medical database, for example, would contain both identifying infor-
mation (e.g., the names of individuals) and sensitive information (e.g., their medical conditions).
k-Anonymity assumes that identifying columns are removed from a database before publication,
and then demands that the database table D can be grouped into equivalence classes with at least k
rows that are indistinguishable with respect to their quasi-identifiers q [117, 134]. Quasi-identifiers
by themselves do not identify users, but can do so when correlated with other data. For example,
the combination of the three quasi-identifiers zip code, date of birth, and gender identifies 87%
of the American population [134]. Each equivalence class E contains all rows that have the same
values for each quasi-identifier q, for example all individuals with the same zip code, date of birth,
and gender. To increase the size of equivalence classes to a minimum of k rows, several algorithms
exist to transform a given database to make it k-anonymous, for example using suppression or
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Table 4. Metrics and references in the data similarity category and the domains they originated in

Section Metric Original Domain Reference

5.3.1 k-anonymity Databases [118]
5.3.2 (α ,k)-anonymity Databases [148]
5.3.3 ℓ-diversity Databases [93]
5.3.4 m-invariance Databases [152]
5.3.5 t-closeness Databases [87]
5.3.6 Stochastic t-closeness Databases [42]
5.3.7 (c,t)-isolation Databases [28]
5.3.8 (k,e)-anonymity Databases [162]
5.3.9 (ϵ ,m)-anonymity Databases [86]
5.3.10 Multirelational k-anonymity Databases [107]
5.3.11 (X,Y)-privacy Databases [144]
5.3.12 Historical k-anonymity Location [20]
5.3.13 Cluster similarity Smart metering [75]
5.3.14 Coefficient of determination R2 Smart metering [75]
5.3.15 Normalized variance Databases [110]

generalization [118] or random sampling [88] (the latter is interesting because it also satisfies
approximate differential privacy, see Section 5.4.3).

privKA ≡ k , where ∀E : |E | ≥ k

However, studies have shown k-anonymity to be insufficient, especially for high-dimensional
data [4] and against correlation with other data sets [93], because it fails to protect against attribute
disclosure [151], i.e. it does not provide property hiding. In addition, k-anonymous data releases do
not offer protection across multiple releases of the same data set [152], or when sensitive data, such
as location data, are semantically close [131]. Despite this criticism, k-anonymity is still widely
used today, and is routinely applied to new privacy domains.

5.3.2 (α ,k )-Anonymity / Privacy Templates. To prevent attribute disclosure and thus allow for
property hiding, (α ,k )-anonymity extends k-anonymity with the additional requirement that in any
equivalence class E (rows that have the same quasi-identifier values), the frequency of a sensitive
value s has to be less than α [145, 148]. As a result, no single sensitive attribute can be dominant in
an equivalence class.

privAK ≡ (α ,k ), where ∀E : |E | ≥ k ∧
|(E,s ) |

|E |
≤ α

However, it has been shown that attribute linkage can occur even when the frequency of s is
less than α [58].

5.3.3 ℓ-Diversity. The ℓ-diversity principle modifies k-anonymity to bound the diversity of
published sensitive information. It states that every equivalence class E must contain at least ℓ
well-represented sensitive values. This general principle can be instantiated in different ways. In
the simplest form, the ℓ-diversity principle requires ℓ distinct values in each equivalence class.
However, this simple instantiation does not prevent probabilistic inference attacks [87].

Stronger instantiations are based on the idea that in each equivalence class, the ℓ most frequent
values of the sensitive attribute s must have roughly the same frequencies [93]. In an instantiation
based on entropy (Section 5.1.2), for example, similar frequencies are indicated by a high entropy
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H (SE ) of the sensitive attribute frequencies.

privLE ≡ ℓ, where ∀E : H (SE ) ≥ log(ℓ)

In an instantiation based on recursion, the most frequent value s1 must occur less often than all
other values si combined, within a multiplicative factor ω.

privLR ≡ ℓ, where ∀E : s1 < ω (sℓ + sℓ+1 + ... + sn )

Although ℓ-diversity is an improvement to k-anonymity, it has been shown to offer insufficient
protection against some attacks. In particular, it does not protect privacy when multiple releases
of statistical data are available [152], when the distribution of sensitive values is skewed [87], or
when sensitive attributes are semantically similar [87], for example numerical values that are close
to each other [162]. In addition, the adversary may be able to reconstruct sensitive attributes if he
knows the algorithm used for data sanitization [161].

5.3.4 m-Invariance. m-Invariance modifies k-anonymity to allow for multiple releases of the
same data set that may contain added, modified, or deleted rows. Given two k-anonymous data
releases, an adversary can correlate the insertions and deletions between two releases to infer
sensitive values. To avoid this attack,m-Invariance states that every equivalence class E must have
at leastm rows, and the values for sensitive attributes s must all be different [152]. In addition, the
set of distinct sensitive values in each equivalence class must be the same in every release.

privMI ≡m, where ∀E : |E | ≥ m ∧ ∀si ,sj ∈ E : si , sj ∧
∀E : distinct s must be the same in all releases

5.3.5 t-Closeness. To prevent attribute disclosure by an adversary with knowledge about the
global distribution of sensitive attributes, t-closeness modifies k-anonymity to bound the distri-
bution of sensitive values. It states that the distribution SE of sensitive values in any equivalence
class E must be close to their distribution S in the overall table. In particular, the distance between
distributions d (S ,SE ), measured using the Earth Mover Distance metric, must be smaller than a
threshold t [87].

privTC ≡ t , where ∀E : d (S ,SE ) ≤ t

5.3.6 Stochastic t-Closeness. Stochastic t-closeness was introduced to bridge the gap between k-
anonymity based metrics and differential privacy (Section 5.4.2) [42]. t-Closeness in its original form
leaves the sensitive values in a data table intact, whereas stochastic t-closeness allows stochastic
modification of the sensitive values. In particular, it can be shown that if the distribution of the
sensitive values satisfies ϵ-differential privacy (see Section 5.4.2), then the data table satisfies
stochastic t-closeness, where the value of t depends on the data table and ϵ .

5.3.7 (c,t )-Isolation. This metric extends k-anonymity to consider an adversary. The metric
measures how well an adversary can isolate points in a database D [28]. The difference between
the adversary’s estimate x and the target point x∗ is given by δx . A target point x∗ is (c,t )-isolated,
i.e., the adversary succeeds, if a ball B with radius cδx around the adversary’s estimate includes
fewer than t other points. c can be seen as isolation parameter, determining the size of the ball,
whereas t is a privacy threshold.

privCT ≡ (c,t ), where |B (x ,cδx ) ∩ D | < t and δx = ∥x − x∗∥

ACM Computing Surveys, Vol. 51, No. 3, Article 57. Publication date: June 2018.



Technical Privacy Metrics: a Systematic Survey 57:21

5.3.8 (k,e )-Anonymity. To modify k-anonymity to apply to numerical instead of categorical
attributes, (k,e )-anonymity additionally requires that the range of sensitive attributes in any
equivalence class E must be greater than e [162].

privKE ≡ (k,e ), where ∀E : |E | ≥ k ∧ ranдe (E) > e

However, (k,e )-anonymity does not take into account how values within the range e are distributed,
which can lead to attribute disclosure via a proximity attack [86]. For example, if 90% of sensitive
values are within a short interval at one end of the range e , and the remaining 10% are at the other
end of e , then the adversary can infer with 90% confidence that a user’s sensitive value is in the
short interval [58].

5.3.9 (ϵ ,m)-Anonymity. Another extension of k-anonymity to numerical attributes is (ϵ ,m)-
anonymity. It addresses the proximity attack against (k,e )-anonymity by bounding the probability
of inferring the value of a sensitive attribute to at most 1/m. To achieve this bound, (ϵ ,m)-anonymity
limits the number of members e in each equivalance class E with numerically ϵ-similar sensitive
values s [86].

privEM ≡ ∀E : ∀e ∈ E :
|Ê |

|E |
≤

1
m
, where Ê are the members of E whose

sensitive values s fall in [s (e ) − ϵ ,s (e ) + ϵ]

5.3.10 Multirelational k-Anonymity. Multirelational k-anonymity modifies k-anonymity to apply
to the record owner level instead of the record level, thus extending it to tables in a relational
database [107]. To do this, multirelational k-anonymity joins the database table identifying the
record owners Dpers with all tables containing database records Di , and then applies k-anonymity
to the result of the join J . For every record owner in Dpers , the resulting join needs to have at least
k − 1 other record owners with the same quasi-identifier values, and so the equivalence classes
Epers contain all record owners with the same quasi-identifier values (instead of all records with
the same quasi-identifier values, as in k-anonymity).

privMK ≡ k , where J = Dpers Z D1 Z · · · Z Dn and ∀Epers ∈ J : |Epers | ≥ k

5.3.11 (X ,Y )-Privacy. (X ,Y )-privacy modifies k-anonymity to bound the confidence with which
sensitive values can be inferred [144]. X and Y denote groups of database columns with quasi-
identifiers and sensitive properties, respectively, and |D[x]| denotes the number of records in
database D containing the value x . (X ,Y )-privacy then requires that for any values x ∈ X and
y ∈ Y , the percentage of records containing both x and y, among those containing x , be less than k .

privXY ≡ k , where max
y∈Y

{
max
x ∈X

{
|D[y,x]|
|D[x]|

}}
≤ k , and 0 < k ≤ 1

Applied to sequential data releases, (X ,Y )-privacy uses columns that are common between two
releases as X and can thus ensure that sequential releases are (X ,Y )-private.

5.3.12 Historical k-Anonymity. In location-based services, users include their location in every
request they send to the service, which can allow the server to track users. Thus, historical k-
anonymity defines (time, location) pairs as quasi-identifiers and requires that the adversary cannot
link a request to an individual user, but only to k or more users [20]. To formalize this requirement,
a user’s personal history of locations L is a sequence of (time, location) pairs, and requestsM are
(potentially obfuscated) times and locations from which user requests were sent. L is time-location
consistent with a requestm if there is an entry in L whose time and location are within the time
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interval and location area given inm. Historical k-anonymity is satisfied if a user’s set of requests
Mu is location-time consistent with the location history of k − 1 other usersU .

privHKA ≡ k , where ∀u,u ′ ∈ U : |Lu′ is location-time consistent withMu | ≥ k

5.3.13 Cluster Similarity. In smart metering, the time series of differences in load measurements,
so-called transitions, can be obfuscated by a load hiding algorithm. Cluster similarity is based on
the idea that an adversary may use clustering to retrieve information about patterns in energy
consumption. To compute cluster similarity, a clustering algorithm is applied to both the original
time series of load transitions T⃗X ∗ and the obfuscated time series T⃗Y , resulting in two sets of
n clusters CX ∗ and CY , respectively. The element-wise subtraction of CX ∗ from CY reveals all
transitions that were not placed in the correct cluster. After normalizing with the number of
original load transitions, cluster similarity then indicates the percentage of correctly clustered
transitions to show how effectively the original values have been hidden [75].

privCS ≡ 1 −
|∀i : CY i −CX ∗i |

|T⃗X ∗ |

5.3.14 Coefficient of Determination R2. The coefficient of determination R2 measures how much
variability in data is accounted for by a model for the data. In smart metering, for example, the data
is the obfuscated time series of differences in load measurements T⃗Y (with T⃗Y indicating the mean
value), and the model is a linear regression fitted to these obfuscated load transitions, resulting in
predicted values T⃗X [75]. The coefficient of determination compares the error sum of squares SSE
and the regression sum of squares SSR .

privR2 ≡ 1 −
SSE

SSR + SSE
, where SSE =

∑
t

(T⃗Y − T⃗X )
2 and SSR =

∑
t

(T⃗X − T⃗Y )

5.3.15 Normalized Variance. In privacy-preserving data publishing that uses data perturbation,
normalized variance is derived from the statistical variance σ 2 and measures the dispersion between
the original data X ∗ and perturbed data Y [110]. However, this metric does not account for the
nature of the data and assumes that high variance means better privacy.

privVAR ≡
σ 2 (X ∗ − Y )

σ 2 (X ∗)

5.4 Indistinguishability
Indistinguishability metrics indicate whether the adversary can distinguish between two items
of interest (such as recipients of a message, or sensitive attributes in a database). Many of these
metrics are associated with privacy mechanisms that provide formal privacy guarantees. While
many come from the database domain, they have also found application in communication systems,
location-based systems, and smart metering.

5.4.1 Cryptographic Games/Semantic Security. The classic definition of semantic security can
be used to prove privacy properties of cryptographic protocols. To this end, a challenge-response
game, or cryptographic game, is set up in which the adversary selects the inputs for a protocol and
is given the output and two alternative outcomes y1 and y2 after the protocol has been executed.
The adversary then has to make an estimate, x , indicating whether y1 or y2 is the correct outcome
x∗. The adversary has an advantage if they can do this with a probability that is non-negligibly
greater than 1

2 , that is, if their probability is better than a random guess [74].
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Table 5. Metrics and references in the indistinguishability category and the domains they originated in

Section Metric Original Domain Reference

5.4.1 Cryptographic game Communication [74]
5.4.2 Differential privacy Databases [45]
5.4.3 Approximate differential privacy Databases [46]
5.4.4 Distributed differential privacy Smart metering [127]
5.4.5 Distributional privacy Smart metering [72]
5.4.6 Geo-indistinguishability Location [11]
5.4.7 d-χ -privacy Databases [24]
5.4.8 Joint differential privacy Databases [77]
5.4.9 Computational differential privacy Databases [100]
5.4.10 Information privacy Databases [43]
5.4.11 Observational equivalence Communication [70]

If the adversary’s advantage is smaller than a negligible function ϵ (k ) (k is a security parameter),
then the protocol provides computational privacy, and unconditional privacy if the advantage is
zero [63].

privCG ≡



1 if p (x = x∗) ≤ 1
2 + ϵ (k )

0 otherwise

5.4.2 Differential Privacy. In statistical databases, differential privacy guarantees that any dis-
closure is equally likely (within a small multiplicative factor ϵ) regardless of whether or not an
item is in the database [45]. For example, the result of a database query should be roughly the same
regardless of whether the database contains an individual’s record or not. This guarantee is usually
achieved by adding a small amount of random noise to the results of database queries. Formally,
differential privacy is defined using two data sets D1 and D2 that differ in at most a single row, i.e.,
the Hamming distance between the two data sets is at most 1. A privacy mechanism, realized as
a randomized function K , operating on these data sets is ϵ-differentially private if for all sets of
query responses S , the output random variables (query responses) for the two data sets differ by at
most exp (ϵ ).

privDP ≡ ∀S ⊆ Ranдe (K ) : p (K (D1) ∈ S ) ≤ exp(ϵ ) · p (K (D2) ∈ S )

In the interactive setting, differential privacy provides privacy guarantees if the allowed number
of queries is limited [97] (each subsequent query reduces the strength of the privacy guarantee by
adding its privacy parameter ϵ). In the non-interactive setting [47], differential privacy provides
guarantees only for a certain class of queries [132]. In the local setting, differential privacy can
protect properties in addition to identities, e.g. settings in a client software [50] or arbitrary strings
[53]. However, the choice of the parameter ϵ is difficult: values reported in the literature vary from
0.01 [68] to 100 [158]. A no-free-lunch theorem shows that differential privacy’s guarantees degrade
in the case of correlated data, for example when nodes are added to a social network graph [81].

5.4.3 Approximate Differential Privacy. Approximate differential privacy relaxes differential
privacy by allowing an additional small additive constant δ [46]. Approximate differential privacy
weakens the privacy guarantee, but allows data releases/query responses with higher utility, e.g.
by allowing a wider range of query types [23], or by reducing the sample complexity of private
learning [18]. The parameter δ should be chosen to be smaller than the inverse of any polynomial
in the size of the database ∥D∥ [48]. In particular, δ ≈ 1

∥D ∥ would allow to publish complete records
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of a small number of individuals, while still meeting the differential privacy requirement. Abadi
et al. [1], for example, use δ ∈ [10−5,1].

privADP ≡ ∀S ⊆ Ranдe (K ) : p (K (D1) ∈ S ) ≤ exp(ϵ ) · p (K (D2) ∈ S ) + δ

5.4.4 Distributed Differential Privacy. Distributed differential privacy extends approximate differ-
ential privacy to a settingwhere distributed entities contribute data to a central data aggregator [127].
The data aggregator can be untrusted and possibly colludes with a subset of the participants. This
extension can be useful in smart metering, where users may not trust the energy provider (who
acts as data aggregator). Each user applies randomness to their own values before sending them to
the data aggregator. Distributed differential privacy allows a subset of users Û ⊂ U to collude with
the aggregator, while still providing privacy guarantees for the remaining honest users. To achieve
this, distributed differential privacy ensures that the privacy mechanism’s probability is taken over
the randomness provided by honest users, or in other words, the probability is conditional on the
randomness rÛ provided by compromised users.

privDDP ≡ ∀S ⊆ Ranдe (K ),∀Û ⊂ U : p (K (D1) ∈ S |rÛ ) ≤ exp(ϵ ) · p (K (D2) ∈ S |rÛ ) + δ

5.4.5 Distributional Privacy. Distributional privacy extends differential privacy to a setting in
which the data sets themselves do not need to be protected, but instead the parameters governing
the generation of data. In a smart metering scenario, for example, these parameters can be user
habits, behavioral patterns, or sets of appliances in a home [72]. Distributional privacy assumes a
distributed setting in which smart meters apply noise to their local data, limiting the energy provider
to querying this distributed database. Formally, distributional privacy uses two parameter sets θ1
and θ2 which govern the creation of two data sets and differ in at most one element. The privacy
mechanism K is distributionally ϵ-differentially private if the probability that query response Kj
is generated is roughly the same, regardless of whether the underlying parameter set is θ1 or θ2.

privDSP ≡ p (θ1 |Kj ) ≤ exp(ϵ ) · p (θ2 |Kj )

5.4.6 Geo-Indistinguishability. Geo-indistinguishability extends differential privacy to location
privacy scenarios. The idea is to apply two-dimensional (planar) noise to the user’s geographical
location so that the differential privacy requirements are met, ensuring that the user enjoys ϵd-
differential privacy within any distance d > 0. Importantly, this definition implies that the user’s
protection level depends on the distance d . This could mean, for example, that a location-based
service provider would be able to distinguish which city the user is in, but not the location within
the city. To achieve geo-indistinguishability, the privacy mechanism K generates randomized
location observations so that the distance between any two locations d (l1,l2) is roughly the same
as the distance between the distributions of randomized location observations dP (K (y1),K (y2))
[11].

privGI ≡ dP (K (y1),K (y2)) ≤ ϵd (l1,l2)

5.4.7 d-χ -Privacy. d-χ -privacy is a generalization of differential privacy that uses distinguisha-
bility metrics dχ to characterize the distance between two datasets instead of the Hamming distance
used in standard differential privacy [24]. In standard differential privacy, the distinguishability
level between two datasets of distance 1 is ϵ . In d-χ -privacy, the distinguishability level between
datasets of arbitrary distance is given by the distinguishability metric dχ .

privDX ≡ dP (K (D1),K (D2)) ≤ dχ (D1,D2)

Depending on the choice of metric, d-χ -privacy can represent different notions of privacy. For ex-
ample, the Euclidean distance is suitable for location privacy and results in geo-indistinguishability
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described above. In smart metering, the maximum metric (or Chebyshev distance) can be used to
distort the accuracy of meter readings while leaving general trends intact.

d-χ -privacy can also be used to construct elastic metrics that adapt to the characteristics of the
application domain. For example, in location privacy, the point-of-interest density may influence
the level of privacy we expect from geo-indistinguishability: in a rural area with few points of
interest, we may need a larger radius compared to an urban area to achieve the same level of
privacy [26].

5.4.8 Joint Differential Privacy. The idea of joint differential privacy [77] is that an individual’s
private data can be disclosed to the individual him/herself, but not to other individuals. Applied to
a game theoretic problem and focusing on player u, for example, joint differential privacy requires
that the joint distribution on outputs given to other players, i.e. K (D)−u , is differentially private in
player u’s input [69].

privJDP ≡ ∀S ⊆ Ranдe (K ) : p (K (D1)−u ∈ S ) ≤ exp(ϵ ) · p (K (D2)−u ∈ S ) + δ

5.4.9 Computational Differential Privacy. Computational differential privacy replaces the un-
restricted adversary used in differential privacy with a computationally bounded adversary. By
using a weaker adversary model, computationally differentially private mechanisms can give more
accurate query responses. Informally, computational differential privacy requires that the outputs
produced by the privacy mechanism “look” differentially private to every adversary. Depending
on how “look” is formalized, the definitions of computational differential privacy can be differ-
ent [100]. For example, a definition based on indistinguishability replaces the unrestricted adversary
with a computationally bounded adversary, and a definition based on simulation requires that the
outputs from randomized functions are computationally indistinguishable from the outputs from
ϵ-differentially private mechanisms K .

5.4.10 Information Privacy. Information privacy captures the notion that the prior and poste-
rior probabilities of inferring sensitive data x∗ do not change significantly, given query outputs
y. ϵ-information privacy implies 2ϵ-differential privacy, but additionally bounds the maximum
information leakage (Section 5.2.7) to at most ϵ/ ln 2 bits [43]. Formally, a privacy-preserving
query output y provides ϵ-information privacy if for all sensitive values x∗, the ratio of posterior
probability p (x∗ |y) to prior probability p (x∗) is very close to 1.

privIP ≡ exp(−ϵ ) ≤
p (x∗ |y)

p (x∗)
≤ exp(ϵ ), ∀y ∈ Y : p (y) > 0

In the context of wireless sensor networks, information privacy indicates that event sources
cannot be observed by an adversary. Event source unobservability requires that for all possible
observations of events in a system, the adversary’s prior probability equals the posterior [156].

5.4.11 Observational Equivalence. Observational equivalence is a formal property that states
that the adversary cannot distinguish between two situations, for example which user sent a given
message [70]. To use this metric, privacy protocols are modeled using a formal process calculus
such as the applied π -calculus.2 Observational equivalence is fulfilled if the observable outputs
from protocol runs in two situations are equivalent. This has been used, e.g., in voting privacy [36],
mobile telephony [12] and webs of trust [16].
2A process calculus is a formal method to model and reason about concurrent systems. The applied π -calculus is a process
calculus that includes cryptographic primitives and has thus been used extensively to check properties of cryptographic
protocols. To verify privacy properties of a protocol, the protocol is modeled in the applied π -calculus, and an automated
tool such as ProVerif can verify whether the privacy properties hold for all possible executions of the protocol.
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5.5 Adversary’s Success Probability
Metrics based on the adversary’s success probability can be seen as general-purpose metrics
that subsume many other aspects of privacy. They depend strongly on the adversary model (see
Section 4.2) and on how exactly success is defined. Even though the metrics in this section mostly
originate from the communication and database domains, they can be applied in every domain
and setting where an adversary can be defined. In addition to the adversary’s success (cases where
the adversary successfully identifies the correct individual, or the true positive rate), metrics in
these section should also consider the false positive and false negative rates, i.e. cases where the
adversary identifies an incorrect individual, and cases where the adversary fails to identify the
correct individual.

Table 6. Metrics and references in the success category and the domains they originated in

Section Metric Original Domain Reference

5.5.1 Adversary’s success rate Communication [150]
5.5.2 Degrees of anonymity Communication [115]
5.5.3 Privacy breach level Databases [52]
5.5.4 (d,γ )-privacy Databases [114]
5.5.5 δ -presence Databases [106]
5.5.6 Hiding property Communication [137]

5.5.1 Adversary’s Success Rate. This metric measures the probability that the adversary is
successful, or the percentage of successes in a large number of attempts [150]. Depending on
the application scenario, success can be defined in different ways: in databases, for example, the
adversary is successful when he can find a record s ′ that is similar to the target record s with a
similarity threshold of τs and an error threshold of τe [104].

privSRD ≡ p (Sim(s,s ′) ≥ τs ) ≥ τe

In communication systems, the adversary is successful when he can identify the sender of a
message [128], or when he can compromise a communication path with a given amount of resources
(e.g., number of nodes and bandwidth) [102].

5.5.2 Degrees of Anonymity. Reiter and Rubin [115] define six degrees of anonymity for commu-
nication systems, which depend on how likely the adversary’s success is. In communication systems,
for example, p (x ) indicates the adversary’s probability to identify the sender (or receiver) of a
message. ‘Absolute privacy’ states that the communication produced no observable effects. ‘Beyond
suspicion’ indicates that the sender is equally as likely as all other potential senders. ‘Probable
innocence’ means that the sender is as likely as not to be the originator of a message. ‘Possible
innocence’ states that there is a nontrivial probability δ that the sender is someone else. ‘Exposed’
indicates that the adversary’s probability is above a threshold τ . Lastly, ‘provably exposed’ says
that the adversary can prove who the sender is.

privDOA ≡




absolute privacy, if p (x ) = 0
beyond suspicion, if p (x ) = 1

|X |

probable innocence, if p (x ) ≤ 0.5
possible innocence, if p (x ) < 1 − δ
exposed, if p (x ) ≥ τ

provably exposed, if p (x ) = 1
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However, it has been noted that the degree of anonymity does not reflect the adversary’s real
probability of success, because it ignores the cardinality of the anonymity set [101].

User-specified innocence [30] merges two degrees of anonymity, probable and possible innocence,
by introducing a parameter α that represents the probability of the most likely user in the anonymity
set.

5.5.3 Privacy Breach Level. A privacy breach occurs if the posterior probability of a property,
given its prior probability, is higher than the threshold τ . In a data mining scenario, for example, a
server (e.g., a recommender system) mines association rules between items (e.g., books) based on
their occurrence in user transactions, and users can randomize their transactions to hide which
user has which items. The privacy breach level then uses the probability that an item s is contained
in a transaction Tx ∗ , given the probability that the item is part of an item set S , which is a subset of
the randomized transaction Ty that was transmitted to the server [52].

privPBL ≡ τ , where ∃s ∈ S so that p (s ∈ Tx ∗ |S ⊆ Ty ) ≥ τ

The privacy breach level can also measure privacy in networking, where the metric refers to the
conditional probability that a node generated a message with specific characteristics, given that
another node received such a message [122].

5.5.4 (d ,γ )-Privacy. An extension of the privacy breach level is d ,γ -privacy, which introduces
additional bounds on the prior and posterior probabilities (d and γ , respectively) so that the ratio
between posterior and prior probability cannot drop by more than a factor of d/γ [114]. This metric
is similar to Information Privacy (Section 5.4.10), but uses more detailed bounds.

privDG ≡
d

γ
≤

p (s |S )

p (s )
, where p (s ) ≤ d and p (s |S ) ≤ γ

5.5.5 δ -Presence. In databases, δ -presence bounds the adversary’s probability of inferring that
an individual u is part of some published data DY , assuming that the adversary has access to
external database tables DZ so that all individuals in DY are also in DZ [106].

privDLP ≡ (δmin ,δmax ), where ∀u ∈ UZ : δmin ≤ p (u ∈ UY ) ≤ δmax

The adversary’s probability can be based on comparing the number of users in the data table (e.g.,
p (u ∈ UY ) =

|UY |
|UZ |

), or on elimating rows based on other attributes. However, this model assumes
that the adversary and the data publisher who assesses whether δ -presence is satisfied have access
to the same external tables. This assumption may not hold in practice [58].

5.5.6 Hiding Property. In communication systems, the source (or destination) hiding property
measures the adversary’s maximum probability p (x (m,u ) ) for any user u to be sender (or recipient)
of a given messagem. The source (or destination) is assumed to be hidden if this probability is
smaller than a threshold τ [137].

privHP ≡ τ , where ∀m,∀u : p (x (m,u ) ) ≤ τ

5.6 Error
Error-based metrics quantify the error an adversary makes in creating his estimate. Because
information about the true outcome is needed to compute these metrics, they cannot be computed
by the adversary. Similar to the adversary’s success probability category, metrics in the error
category are applicable to all domains.
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Table 7. Metrics and references in the error category and the domains they originated in

Section Metric Original Domain Reference

5.6.1 Adversary’s expected estimation error Location [130]
5.6.2 Expectation of distance error Location [66]
5.6.3 Mean squared error Communication [112]
5.6.4 Percentage incorrectly classified Social networks [105]
5.6.5 Health privacy Genome privacy [71]

5.6.1 Adversary’s Expected Estimation Error. In location privacy, the adversary’s expected esti-
mation error measures the adversary’s correctness by computing the expected distance between the
true location x∗ and the estimated location x using a distance metric d (), for example the Euclidean
distance or a metric that yields either 0 or 1 (in this case, the metric reduces to the adversary’s
probability of error). The expectation is computed over the posterior probability of the adversary’s
estimated locations x based on his observations y [130].

privAEE ≡
∑
x ∈X

p (x |y)d (x ,x∗)

The metric can also be used in other domains if an appropriate distance metric is available. In
genomic privacy, for example, the distance metric depends on how the values of genetic variations
are encoded [71].

5.6.2 Expectation of Distance Error. Similar to the adversary’s expected estimation error, the
expectation of distance error measures the expected distance error of an adversary, but over multiple
timesteps T and location assignment hypotheses H [66]. Each hypothesis h assigns a user to a
location with probability ph,t (x ), and the distance dh,t (x ,x∗) indicates the distance between the
correct user location and the location in hypothesis h at timestep t .

privEDE ≡
1
|U |T

∑
t ∈T

∑
h∈H

ph,t (x )dh,t (x ,x
∗)

5.6.3 Mean Squared Error. In statistical parameter estimations, a common goal is to minimize
the mean squared error. As a privacy metric, the mean squared error describes the error between
observations y by the adversary and the true outcome x∗, for example the error in the assignment
of communication relationships [112], or the error in reconstructing user data in participatory
sensing [59].

privMSE ≡
1
|X ∗ |

∑
x ∗∈X ∗

∥x∗ − y∥2

5.6.4 Percentage Incorrectly Classified. This metric measures the percentage of incorrectly
classified users or events U ′ within the set of all users or events U , for example users that were
incorrectly de-anonymized by the adversary [105], or events that were incorrectly classified in a
smart metering scenario [90].

privPIC ≡
U ′

U

5.6.5 Health Privacy. Health privacy is a metric from genome privacy that captures privacy with
regard to a specific disease [71]. The metric assumes that a set of genetic variationsV contributes to
the disease risk, where each variation contributes to a varying extent ωv . The better an adversary
can predict the individual genetic variations, the better he is able to infer the user’s disease risk.
The metric is computed as the weighted, normalized sum over a base metric Bv which measures
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the privacy of each genetic variation. Base metrics can be normalized entropy (Section 5.1.4),
normalized mutual information (Section 5.2.3), or expected estimation error (Section 5.6.1) [71].
Depending on the base metric, health privacy measures a different kind of output; in the case of
expected estimation error, health privacy measures the adversary’s weighted average error.

privHLP ≡
1∑

v ∈V ωv

∑
v ∈V

ωvBv

5.7 Time
Time-based metrics focus on time as a resource that the adversary needs to spend to compromise
users’ privacy. Some time-based metrics measure the time until the adversary succeeds, assuming
PETs will fail eventually, while others measure the time until the adversary’s confusion, assuming
PETswill succeed eventually. Thesemetrics originate (and are usually applied) in the communication
and location domains, but have also found application in smart metering.

Table 8. Metrics and references in the time category and the domains they originated in

Section Metric Original Domain Reference

5.7.1 Time until adversary’s success Communication [149]
5.7.2 Maximum tracking time Location [119]
5.7.3 Mean time to confusion Location [67]

5.7.1 Time until Adversary’s Success. The most general time-based metric measures the time
until the adversary’s success [149]. It assumes that the adversary will succeed eventually, and is
therefore an example of a pessimistic metric. This metric relies on a definition of success, and varies
depending on how success is defined in a scenario. For example, success in a communication system
can be if the adversary identifies n out of N of the target’s possible communication partners [6].

Success can also be when the adversary first compromises a communication path [73, 140]. In an
onion routing system such as Tor [41], path compromise happens when the adversary controls all
relays on a user’s onion routing path.

5.7.2 Maximum Tracking Time. In location privacy, the adversary often aims to not only break
privacy at a single point in time, but to track a target’s location over time. The adversary’s tracking
ability is measured by the maximum tracking time, defined as the cumulative time that the size of
the target u’s anonymity set remains 1 [119].

privMTT ≡ Cumulative time when |ASu | = 1

This metric tends to overestimate a target’s privacy because it assumes that the adversary has to be
completely certain, i.e., the anonymity set has to be of size 1, to be successful. In reality, however,
an adversary may be capable to continue tracking despite a small number of users in the target’s
anonymity set.
In a smart metering scenario, the maximum tracking time describes the percentage of a time

interval during which the adversary can correctly classify the user’s load transitions [90].

5.7.3 Mean Time to Confusion. To avoid the maximum tracking time’s overestimation of privacy,
the mean time to confusion measures the time during which the adversary’s uncertainty stays
below a confusion threshold τ [67]. The adversary’s uncertainty is measured using the entropy
H (X ) (Section 5.1.2), with the random variable X indicating the adversary’s estimated probabilities
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for each member of the anonymity set.

privMTC ≡ Time during which H (X ) < τ

Instead of time to confusion, the metric can also measure the distance to confusion, i.e., the travel
distance until the adversary’s tracking uncertainty rises above the threshold.

5.8 Accuracy / Precision
Accuracy metrics quantify the accuracy of the adversary’s estimate. Although it can be argued
that the accuracy of an estimate is not correlated with privacy because it does not allow to draw
conclusions about the adversary’s correctness or certainty [130], inaccurate estimates can lead to
higher privacy and are thus an important aspect of privacy. Most metrics in this category originate
from the domain of location-based services and measure geographic precision, but others are
applicable more widely, including databases and communication systems.

Table 9. Metrics and references in the accuracy/precision category and the domains they originated in

Section Metric Original Domain Reference

5.8.1 Confidence interval width Databases [7]
5.8.2 (t ,δ ) privacy violation Databases [76]
5.8.3 Statistically strong event unobservability Communication [126]
5.8.4 Size of uncertainty region Location [31]
5.8.5 Accuracy of obfuscated region Location [13]
5.8.6 Coverage of sensitive region Location [31]

5.8.1 Confidence Interval Width. According to the confidence interval width, the amount of
privacy at τ% confidence is given by the width of the confidence interval for the adversary’s estimate
x ∈ [x2,x1] in which the true outcome x∗ lies [7].

privCIW ≡ |x2 − x1 | where p (x1 ≤ x < x2) = τ/100

However, when publishing perturbed data, knowledge of the confidence interval width may allow
reconstruction of the original distribution [5].

5.8.2 (t ,δ ) Privacy Violation. In data mining, (t ,δ ) privacy violation gives information whether
the release of a classifier for public data is a privacy threat, depending on how many training
samples t are available to the adversary. Training samples link public data D to sensitive data S
for some individuals, and privacy is violated when an adversary can infer sensitive information
from public data for individuals who are not in the training samples. The metric compares the
Bayes errors ρ for the cases when the adversary builds a classifier based on training samples alone
(ρ (t )), or based on training samples and a given classifier for public data (ρ (t ,C (D))). The classifier
C (D) is (t ,δ ) privacy violating if it reduces the adversary’s Bayes error by more than the privacy
parameter δ [76].

privTPP ≡ ρ (t ;C (D)) ≤ ρ (t ) − δ

5.8.3 Statistically Strong Event Unobservability. In wireless sensor networks, a privacy goal is
to hide where in the network an event has occurred. Statistically strong event unobservability
compares the message patterns in all parts of the network so that event locations are not revealed
by a sudden burst of messages. For example, the event sources in a wireless sensor network are
unobservable if the distributions of inter-message delays are roughly the same in all parts of the
network. Specifically, the metric requires that the distance between distributions d (F1,F2) is smaller
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than τ , and that the difference between the distribution parameters f is smaller than ϵ [126].
However, the metric is limited to distributions that have a single parameter, such as the exponential
distribution.

privSEU ≡ (τ ,ϵ ), where d (F1,F2) ≤ τ ∧ (1 − ϵ ) f1 ≤ f2 ≤ (1 + ϵ ) f1

5.8.4 Size of Uncertainty Region. In location privacy, the size of the uncertainty region denotes
the minimal size of the region RU to which an adversary can narrow down the position of a target
user u [31].

privSUR ≡ Area(RU )

5.8.5 Accuracy of Obfuscated Region. In location-based services, users may report a certain
region back to a service provider, e.g. to ask for local services in that region. To protect their location
privacy, users can obfuscate this region before submitting it by enlarging it to a point where it
satisfies a chosen minimum user requirement rmin (assuming circular areas). The accuracy of the
obfuscated region then indicates how relevant to a service provider the reported area is, a value
of 0 representing the lowest relevance, or highest level of privacy respectively. The metric can be
computed based on the optimal accuracy provided by the used sensing technology ropt and the
user-specified minimum rmin [13].

privAOR ≡
r 2opt

r 2min

5.8.6 Coverage of Sensitive Region. The coverage of the sensitive region evaluates how a user’s
sensitive regions RS overlap with the adversary’s uncertainty region RU (see Section 5.8.4) [31]. A
sensitive region can be, for example, a hospital or a nightclub. The uncertainty region indicates
the smallest region of which the adversary is certain that it includes the user. If the two regions
overlap, the adversary succeeds in linking the user to the sensitive region.
The metric is normalized to the area of the uncertainty region, so that it becomes 1 when RU

equals or is fully contained in RS , in which case the adversary can indubitably associate a user with
the sensitive region.

privCSR ≡
Area(RS ∩ RU )

Area(RU )

6 HOW TO SELECT SUITABLE PRIVACY METRICS
Given the number and diversity of privacy metrics, selecting metrics for a given scenario can be
difficult. We suggest a series of nine questions to guide the selection process. Answering each of
the questions makes sure that all aspects of metric selection are considered. Where possible and
appropriate, we point to metrics or groups of metrics that we associate with particular answers.
The first two questions ask about which aspects of privacy should be quantified (question 6.1),

and which adversary types we need to protect against (question 6.2). Next, we suggest to consider
which data sources need to be protected (question 6.3), and which input data are available to
compute the metrics (question 6.4). We then move on to consider the requirements of the target
audience (question 6.5) and which metrics have been used in related work (question 6.6). We
also suggest to check whether any of the selected metrics have flaws (question 6.7), and whether
validated implementations for the metrics are available (question 6.8). Finally, we consider strategies
to choose parameter settings for the selected metrics (question 6.9).
We have already succesfully applied this selection strategy in a case study for genomic pri-

vacy [142], and found the following questions useful to support the selection process.
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Table 10. Privacy Metrics (1): Uncertainty, Information Gain/Loss, and Similarity/Diversity Outputs
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Anonymity set size [0, |X |] H obs IP x
Asymmetric entropy [0,1] H obs, pub IP x x
Conditional entropy [0,∞] H obs, pub IP x x
Conditional privacy [1,∞] H obs, pub IP x x
Cross-entropy [0,∞] H pub IP x x
Cumulative entropy [0,∞] H obs IP x
Degree of unlinkability [0,∞] H obs, pub P x (x)
Entropy [0,H0 (X )] H obs, pub IP x
Genomic privacy [0,∞] H pub P x x
Inherent privacy [1, |X |] H obs, pub IP x
Max-entropy (Hartley) [0,∞] H obs, pub IP x
Min-entropy [0,∞] H obs, pub IP x
Normalized entropy [0,1] H obs, pub IP x
Protection level [0,∞] H obs P x x
Quantiles on entropy [0,H0 (X )] H obs, pub IP x x
Rényi entropy [0,∞] H obs, pub IP x x
User-centric privacy [0,H0 (U )] H obs IP x x

In
fo
rm

at
io
n
G
ai
n

Amount of leaked information [0,∞] L pub, oth IP x
Conditional mutual information [0,∞] L obs, pub IP x x x
Conditional privacy loss [0,1] L obs, pub IP x x
Full/partial disclosure [0,1] L obs, pub IP x x
Increase in adversary’s belief true, false, δ : [0,1] L obs, pub IP x x x
Information surprisal ]0,∞] L pub P x x
Maximum information leakage [0,∞] L obs, pub IP x
Mutual information [0,∞] L obs, pub IP x x
Normalized mutual information [0,1] H obs, pub IP x x
Pearson’s correlation coefficient [0,1] L obs, rep IP x
Positive information disclosure [0,1] L obs IP x
Privacy score [0,∞] L pub P x
Reduction in observable features [0,1] L obs, rep P x
Relative entropy [0,∞] H obs, pub IP x x
(Relative) Loss of anonymity [0,H (X )] L obs IP x x (x)
System anonymity level [0,∞] H obs I x x

Si
m
ila
rit
y

(α ,k)-anonymity k: [0,∞], α : [0,1] k: H, α : L pub IP x
(c,t)-isolation [0,∞] H pub IP x x x
Cluster similarity [0,1] L obs, rep P x
Coefficient of determination R2 [0,1] L obs, rep P x
(ϵ ,m)-anonymity ϵ : [0,1], m: [1,∞] ϵ : H, m: H pub IP x
Historical k-anonymity [0,∞] H obs IP x x
k-anonymity [1, |D |] H pub I x
(k,e)-anonymity [0,∞] H pub IP x
ℓ-diversity [0,∞] H pub IP x
m-invariance [0,∞] H pub IP x
Multirelational k-anonymity [0,∞] H pub I x x
Normalized variance [0,1] H pub IP x
Stochastic t-closeness t: [0,∞], ϵ : [0,∞] L pub IP x x
t-closeness [0,∞] L pub IP x x
(X,Y)-privacy ]0,1] L pub IP x xACM Computing Surveys, Vol. 51, No. 3, Article 57. Publication date: June 2018.
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Table 11. Privacy Metrics (2): Indistinguishability, Adversary’s Success Probability, Error, Accuracy/Precision,
and Time Outputs
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Approximate differential privacy ϵ : [0,∞], δ : [0,∞] ϵ : L, δ : L pub IP x x
Computational differential privacy [0,∞] L pub IP x x x x
Crypto. game / semantic security true, false H obs IP x x x
d-χ -privacy [0,∞] L pub IP x x
Differential privacy [0,∞] L pub IP x x
Distributed differential privacy ϵ : [0,∞], δ : [0,∞] ϵ : L, δ : L pub, rep IP x x
Distributional privacy [0,∞] L pub, rep P x x
Geo-indistinguishability [0,∞] L obs P x x
Information privacy true, false H obs IP x x
Joint differential privacy ϵ : [0,∞], δ : [0,∞] ϵ : L, δ : L pub IP x x
Observational equivalence true, false H obs IP x x

Su
cc
es
s

Adversary’s success rate [0,1] L obs IP x x (x)
(d,γ )-privacy [0,1] L obs IP x x x
Degrees of anonymity [0,1] L obs IP x x x
δ -presence [0,1] L pub I x x x
Hiding property [0,1] L obs I x x
Privacy breach level [0,1] L obs IP x x x

Er
ro
r

Adv.’s expected estimation error [0,1] L obs IP x x
Expectation of distance error [0,∞] H obs P x x
Mean squared error [0,∞] H obs IP x x
Percentage incorrectly classified [0,1] H obs, rep IP x x

A
cc
ur
ac
y

Accuracy of obfuscated region [0,1] L obs P x
Confidence interval width [0,∞] H pub, obs IP x x
Coverage of sensitive region [0,1] L obs P x x
Size of uncertainty region [0,∞] H obs P x
Stat. strong event unobservability [0,∞] L obs P x x
(t,δ ) privacy violation [0,1] L pub P x x x x

Ti
m
e Maximum tracking time [0,∞] L obs I x

Mean time to confusion [0,∞] L obs I x x
Time until adversary’s success [0,∞] H obs IP x x (x)

6.1 Suitable Output Measures?
Which aspects of privacy do we want to quantify? Do we want to give privacy guarantees, or is some
loss of privacy acceptable?
The pool of potential metrics can be narrowed down by deciding which outputs we want to

measure. In Section 4.5, we classify the output measures of privacy metrics into eight categories.
Figure 1 and the Output column in Tables 10 and 11 list the output measure for each metric.
If the application scenario requires privacy guarantees in the sense that privacy properties can

be proven to hold, the only viable choices for metrics are in the indistinguishability category. If the
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application instead calls for a quantification of privacy levels, metrics from the other categories are
more suitable.
Instead of fixing a single output measure for a scenario, we recommend to measure several

different outputs. Because none of the metrics measures ‘privacy’ directly, but only quantities
assumed to be related to privacy, each additional output category gives information about an
additional aspect of privacy.
For example, a study about location privacy by Shokri et al. [130] used metrics from three

different categories to measure the adversary’s accuracy (confidence interval width, Section 5.8.1),
uncertainty (entropy, Section 5.1.2), and error (expected estimation error, Section 5.6.1). Following
our recommendation, this selection could be extended with a success metric that quantifies how
likely it is for the adversary to succeed, or with a time metric that measures the time until the
adversary’s success. We might also add a second uncertainty metric that indicates the size of the
crowd into which an individual can blend.

Besides including metrics from different categories, we recommend to select metrics that reflect
the average case, the distribution of privacy values, and the worst case.

6.2 Adversary Models?
What are the characteristics of the adversary we consider? How do we incorporate the adversary’s
goals and their knowledge?
We observed that papers presenting attacks against privacy tend to use metrics based on time,

error, or the adversary’s success probability, whereas papers presenting new PETs tend towards
accuracy, similarity, and indistinguishability metrics. In both cases, this is a convenient choice:
most metrics in the first group have a stronger focus on the adversary, while the metrics in the
second group emphasize the efficacy of the presented PET. However, as we have argued before, the
measurement of privacy benefits when more aspects of privacy are measured. We therefore believe
that both the ‘attack’ and ‘defense’ perspective can benefit from selecting metrics from the other
side.

We also observed that different privacy domains make different assumptions about the adversary.
For example, time-based metrics in communication systems measure the time until the adversary’s
success, whereas time-based metrics in location privacy measures the time until the adversary’s
confusion. This is a fundamental difference, and it is not obvious which flavor of the assumption
holds in other privacy domains.
Care must be taken when choosing metrics that do not consider an adversary model. For

example, most data similarity metrics such as k-anonymity (Section 5.3) compute the level of
privacy depending only on properties of the data. However, if the adversary happens to have
relevant prior knowledge, the privacy level indicated by k is no longer accurate.

We found fewmetrics that explicitly consider the resources an adversary has to expend in order to
succeed. Aside from time-based metrics, the only other metric considering resources is probability
of compromising a communication path (a variant of the adversary’s success rate, see Section 5.5.1),
where bandwidth and the number of nodes are the constrained resources. Resource-based metrics
are an interesting area for future research, which means that if we consider a resource-constrained
adversary, we will have to create new metrics.
Lastly, it is important to consider which type of sensitive information the adversary aims to

reveal, i.e. either user identities or properties, and to select metrics that are able to measure the
relevant aspect.

6.3 Data Source?
Which data sources do we aim to protect?
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We introduced four data sources in Section 4.3 – published, observable, re-purposed, or all other
data. Depending on which data source needs protecting, different metrics apply. We summarize the
primary data sources for each of the metrics in the Primary data source column in Tables 10 and 11.

Although in many scenarios one data source will be the main cause of concern, considering all
four data sources reduces the likelihood that unforeseen events compromise the entire system.
It also enables informed decisions about which privacy risks should be mitigated or accepted. In
addition, considering all four data sources can emphasize the need for data minimization, because
data that is not there does not need protection.

6.4 Availability of Input Data?
Which types of input data do we want to consider, and which are available in our scenario?

Input data refers to the information that is needed to compute a metric, such as the adversary’s
estimate, resources, and prior knowledge, the true outcome, or parameter values. If a certain kind
of input data is not available or applicable in a scenario, we can disregard all metrics that need this
input type. Similarly, if we explicitly want to consider a certain input, we can disregard metrics
that do not use this input type. We describe different kinds of input data in Section 4.4 and show
the kinds of input data for each metric in the Inputs column of Tables 10 and 11.

6.5 Target Audience?
What is the intended audience for our study? What are their expectations regarding the presentation
of results, and do they understand the interpretations of our metrics?

An important consideration for the selection of metrics is the intended audience, especially with
regard to laypeople and researchers in other academic disciplines.

Whenever results need to be communicated to laypeople, it is important to select metrics that can
be understood easily. This does not mean that the formal definition of the metric has to be simplistic;
rather, it means that the metric should have an intuitive interpretation, even if it simplifies the
underlying technical details. However, we are not aware of user studies that evaluate how easily
different metrics are understood by laypeople, or which interpretations help understanding.

Whenever metrics are intended to be used by researchers in other academic disciplines, it may be
beneficial to use methods and terminology common in the respective discipline. Consider genome
privacy as an example: in many areas of biology it is common to conduct statistical analyses; for
non-privacy researchers in this field, metrics based on accuracy, error, or success will therefore be
easier to understand and adopt than, say, metrics based on indistinguishability.

6.6 Related Work?
Which metrics are used by work that is related to ours, and would those metrics be suitable in our work
as well? Which mathematical concepts or formalisms are used by others in our field? Which of these
are already available in the tools we use?

To enable comparisons between different studies in the same privacy domain, it is useful to select
metrics that have already been used by related work, even if those metrics would otherwise not be
the first choice. In addition, well-known metrics are likely to be more easily understood by other
researchers in the same field.
A related consideration is expertise. Some metrics are conceptually difficult, and hard to use

correctly. To reduce the risk of invalidating the results of an entire study, we recommend to select
both comparatively simple metrics and more complex ones.
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6.7 Quality of Metrics?
Do any of the candidate metrics have known flaws? Is it feasible to conduct a study that verifies that
candidate metrics indeed behave as we intend?

Even though it is desirable to work with high-quality metrics, few studies systematically evaluate
the quality of privacy metrics. This means that information about metric quality is not readily
available at the time of this writing. Even so, some metrics do have known weaknesses (which we
have pointed out throughout Section 5) and should only be used with caution. If selecting known
weak metrics, we recommend to use them in combination with other metrics to help offset the
weaknesses.

If results about metric quality are not available for a particular privacy domain, it may be possible
to conduct a small study to evaluate how candidate metrics perform.

6.8 Metric Implementations?
Are there implementations of the candidate metrics that we can use, or compare our implementation
with?
Even when metrics are easy to understand, implementing them in a particular scenario can

be difficult, and challenges can arise with unexpected aspects of a metric. For example, when
implementing the entropy of an anonymity set, the challenge may not be entropy itself, but the
propagation of anonymity set probabilities over multiple timesteps. Common challenges like this
are likely to be solved to different degrees in different implementations. The more research groups
use and validate an implementation, the higher the chance of detecting implementation errors. We
therefore recommend to consider selecting metrics for which a validated implementation exists.
Ultimately, only implementations that have been thoroughly validated can lead to consistent results
across studies.

6.9 Metric Parameters?
How should we choose the parameter values for the candidate metrics?
Many metrics use parameters to adapt to the privacy requirements of specific scenarios (see

the Parameters column in Tables 10 and 11). For example, k-anonymity (Section 5.3.1) uses the
parameter k to indicate how many individuals in a database should be indistinguishable from each
other, user-centric privacy (Section 5.1.14) uses a parameter to indicate how fast (in the user’s
opinion) their privacy decays over time, and health privacy (Section 5.6.5) uses weights to indicate
the contribution of genetic varations to a disease. However, it is often difficult to decide how these
parameters should be set. For example, studies using differential privacy (Section 5.4.2) have used
values for ϵ that span five orders of magnitude (from 0.01 to 100), and aside from Lee and Clifton [85],
there is not much literature on parameter setting for differential privacy. For k-anonymity (Section
5.3.1), some authors argue that k = 3 satisfies US regulations for the release of educational data
[35], and some have used k = 5 for the release of medical data [116].

There are a number of strategies that can help determine parameter settings or mitigate subop-
timal parameter settings. Most important is to clearly state the requirements of the application
scenario. Then, we recommend five strategies: (1) Ask users what levels of privacy they would deem
acceptable. However, care must be taken to present privacy levels and the influence of parameter
settings in an accessible way so that users do not need extensive technical knowledge to participate.
(2) Consider the required utility, especially when there is concern that higher privacy will result in
lower utility. (3) Use real-world data to determine parameter settings for case studies. (4) Evaluate
several parameter settings to analyze how the parameter values influence privacy. (5) Finally, we
recommend to also include metrics that do not have parameters.
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7 FUTURE RESEARCH DIRECTIONS
Despite the substantial body of research into privacy metrics presented in the previous sections,
there are a number of questions that merit further research.

7.1 Interdependent Privacy
Interdependent privacy refers to scenarios in which actions of one user affect the privacy of other
users, for example in social networks [136], location privacy [140], or genome privacy [71]. There
are two options for measuring interdependent privacy. The first option is to measure how the
value of an existing privacy metric changes when the degree of interdependency increases. The
effect of interdependency can then be shown by comparing absolute values [22], or by computing
a difference [111].

The second option is to create new metrics that explicitly consider interdependency. In this case,
it can be beneficial to make use of metrics that measure the consequences that one user’s actions
have on the privacy of another user. For example, this is done in game theory, where the widely
used Helly metric [139] assesses players’ strategies in terms of their consequences which are the
payoffs for each player. We believe further research is needed to investigate the capabilities of these
two options.

7.2 Privacy Attitudes and Behaviors
In this survey, we focused on technical privacy metrics and did not consider metrics that measure
users’ privacy attitudes, behaviors, or perception [113]. User-assigned privacy or privacy risk scores
vary greatly in how information is collected from the user. For example, some studies measure
users’ perception of privacy risks or privacy attitudes on Likert scales [2, 3]. Others require users
to label sensitive data [160], assign privacy scores to their credentials [157], or configure existing
mechanisms according to their privacy needs [151]. Some studies work with risk attitudes that are
inferred from user actions via machine learning [8].
Some metrics in our survey combine a technical metric with parameters that are specified by

users to reflect their preferences, for example user-centric privacy (Section 5.1.14), coverage of
sensitive region (Section 5.8.6), or privacy score (Section 5.2.10). In general, however, it is an open
question how best to integrate user attitudes, behaviors, or perceptions with technical metrics.
In addition, it is unclear whether this integration is generally useful, and which scenarios would
benefit most.

7.3 Aggregating Metrics
In scenarios with a large number of entities, such as thousands of genomic variations or users in a
communication system, it can be beneficial to aggregate (or compose), metrics. Some metrics in
our survey attempt to do this, for example cumulative entropy (Section 5.1.10), genomic privacy
(Section 5.1.13), health privacy (Section 5.6.5), or expected estimation error (Section 5.6.1). All
of these metrics are based on an addition of privacy values. Their results are a sum (cumulative
entropy, genomic privacy), a weighted arithmetic mean (health privacy), or an expected value
(expected estimation error). However, depending on the distribution of the underlying population,
the arithmetic mean may lead to biased results [95]. In some situations, a geometric mean is
preferable because it assumes a log-normal, rather than normal, distribution, and is less biased
by outlier values [32]. However, in the field of privacy measurement it is not clear what these
situations are. We therefore believe that privacy research would benefit from a rigorous study of
ways to aggregate metrics.
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Another option to aggregate privacy values is visualization. When metrics are visualized, a
common option is to display averages – the same strategy as with aggregate metrics. However,
more sophisticated plot types can highlight issues such as fairness that are hidden when averages
are used. For example, box plots display the smallest and largest privacy values as well as the first,
second, and third quartile; violin plots add kernel density plots to visualize the distribution of
privacy values. These plots give more information than aggregate metrics; however, it is unclear
how aggregate metrics can be designed so that the benefits of these plots are preserved.

7.4 Combining Metrics
Whereas the aggregation of metrics considers values of the same privacy metric for many entities,
the combination of metrics considers values of different privacy metrics for one entity. Combining
different metrics can be useful if the combination retains the strengths of each metric while reducing
their weaknesses. It can also simplify interpretation to express the performance of a PET with a
single number. Metrics in our survey use three methods to combine metrics: adding sensitivity
scores, normalizing metrics, and extending metrics to new contexts.

Metrics that combine a sensitivity score with a technical metric are user-centric privacy (using
a linear combination, Section 5.1.14) and privacy score (using sensitivity as a weighting factor,
Section 5.2.10). As mentioned in Section 7.2 above, it is not clear how sensitivity scores and
technical metrics can best be combined. In addition, it is not clear whether the resulting values
have a meaningful interpretation.
Metrics that combine two technical metrics typically use one metric to normalize another, for

example normalized entropy (Section 5.1.4), normalized mutual information (Section 5.2.3), or
reduction in observable features (Section 5.2.13). Normalization can make it easier to interpret
privacy measurements, but for some metrics, is is not clear if and how they can be normalized, or
which normalization method works best.

Metrics that adapt a privacy metric so that it can be used in a new context are computational
differential privacy (Section 5.4.9) which adapts differential privacy to a new adversary type,
and entropy combined with Bayesian belief tables to apply entropy across multiple time-steps
(Section 5.1.2). These innovative metrics raise two questions: first, whether their mechanisms can
extend the range of use for other metrics as well, and second, whether there are other mechanisms
that can be used in a similar way to adapt existing metrics to new use cases.

7.5 Quality of Metrics
We presented a number of quality indicators for privacy metrics in Section 2.While there is a general
consensus that high-quality metrics should be used, there is no consensus what exactly constitutes
high quality and how it should be measured. As a result, there are few studies investigating
the quality of privacy metrics. For example, in a previous study, we systematically compared 22
metrics for genome privacy and found that metrics varied greatly with regard to consistency
and monotonicity [141, 142]. Although our study yielded good results for a selection of privacy
metrics in one specific scenario, it was limited in terms of the scenario, quality indicators, and
number of privacy metrics. It is unclear whether the results of our study would hold in general,
and therefore we believe that more studies are needed that rigorously evaluate the quality and thus
the meaningfulness of privacy metrics.

8 CONCLUSION
In this survey we presented a comprehensive review of privacy metrics. We described and discussed
a selection of over eighty privacy metrics using examples from six different privacy domains.
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To structure the complex landscape of privacy metrics, we introduced categorizations based on
the aspect of privacy they measure, their required inputs, and the type of data that needs protection.
In addition, we highlighted topics where we believe additional work on privacy metrics is needed.
This includes research toward the combination and aggregation of privacy metrics as well as the
field of interdependent privacy.
Finally, we presented a method on how to choose privacy metrics based on nine questions

that help identify the right privacy metrics for a given scenario. Most importantly, we argue
for the selection of multiple metrics to cover multiple aspects of privacy. We believe that our
systematization will serve as a reference guide for privacy metrics that allows informed choices of
suitable privacy metrics and thus serves as a useful toolbox for privacy researchers.
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