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Abstract—Many of the envisioned applications based on
Vehicle-to-Vehicle (V2V) communication require a certain
amount of information received from other road users. Urban
scenarios pose a particular challenge to the communication
quality for Vehicular Ad-Hoc Networks (VANETs) as obstacles
such as buildings, foliage, and infrastructure attenuate the signal.
These challenges have to be taken into account already at the
development stage of applications.

In this paper we introduce a wall-clock time test approach
which is capable of emulating the availability of information
depending on the topology of an urban scenario. To this end, we
make use of a neural network to predict LOS/NLOS probabilities
which can then in turn be used to predict packet success rates.
Our method achieves a high prediction accuracy that enables the
realistic testing of a device-under-test in terms of communication
and computational load.

I. INTRODUCTION

In December 2016 the U.S. Department of Transportation
issued a Notice of Proposed Rulemaking (NPRM) on Vehicle-to-
Vehicle (V2V) communications [1], proposing that automakers
should be required to include V2V technologies in all new
vehicles. This technology, most likely going to be based on
short range IEEE 802.11p communication, includes the periodic
broadcasting of Basic Safety Messages (BSMs) containing
information such as the position, the speed and the heading
of the transmitting vehicle. Receiving vehicles can use this
information to prevent traffic accidents. Apart from improving
road safety, applications based on IEEE 802.11p include phased
traffic lights [2], optimized routing [3], or platooning [4].

Future providers of these applications need to be able to
guarantee a certain degree of comfort and safety to their
customers. Thus, specific knowledge about the technical
boundaries of their products is mandatory during development.
The successful operation of V2V applications depends on
the quality of the communication channel, as many of the
envisioned applications require information received from
other road users or the infrastructure. This quality is heavily
influenced by buildings and other obstacles that attenuate
the wireless signal. From a provider’s perspective, technical
limitations caused by a volatile communication channel need
to be taken into account when developing new applications to
prevent image loss and disappointed customers.

This challenge can be overcome by means of simulation.
Coupled network and traffic simulators, enriched with crowd-
sourced geo-data (e.g from OpenStreetMap (OSM) [5]) enable
the detailed packet-level simulation of various V2V applications.
For example, the Veins framework [6] couples OMNeT++ and
SUMO [7]. To set up such a realistic simulation study, at
least three scripted conversions and two manually generated
configuration files are required (see upper part of Figure 1). A
second link-level simulation approach based on OSM data is
available in the form of GEMV2 [8]. In comparison to Veins,
it uses one more step for generating mobility data and does
not need configuration files. Buildings are generated using
scripts within the first simulation run (see middle part of
Figure 1). In this paper, we propose that instead of using
a full-featured simulation to learn about the communication
characteristics, a neural network can be used as part of a
metamodel to considerably shorten the set-up process and at
the same time significantly speed-up the simulation study (see
bottom part of Figure 1).

Simulation performance is in fact a problem when it comes
to wireless network simulation which usually is difficult
to run in parallel [9]. The execution time depends on the
size of the considered VANET and on the topology of the
scenario. Performance decreases with an increasing number of
communicating vehicles and with the amount of obstacles such
as buildings. This leads to the simulation speed being far off
wall-clock time when investigating networks of a hundred or
more vehicles. Unfortunately, for the test of real hardware, wall-
clock simulation speeds are required, as the only alternative is
to conduct field operational tests with a high number of real
vehicles equipped with IEEE 802.11p-compliant transceivers
units, driving in the envisioned type of environment.

To generate realistic communication loads for a device under
test, we propose the use of a neural network to predict whether
a communication link is Line-of-Sight (LOS) or Non-Light-
of-Sight (NLOS). As shown in Figure 2, the probability of
successfully receiving a packet heavily depends on whether
an obstacle is blocking the line of sight. Once it has been
established whether a communication link is LOS or NLOS, a
prediction of the packet being successfully received is straight-
forward, as (apart from fast-fading effects) the reception



Figure 1. Top and center: Conventional simulation approach with link-level frameworks Veins [6] and GEMV2 [8]. Bottom: New approach using a neural
network based metamodel.

probability mainly relies on the transmission power, radio
sensitivity, and other known constants.

Our approach is realized as a metamodel that enables the
wall-clock time emulation of communication created by a large
amount of vehicles. Furthermore, the prediction of LOS/NLOS
conditions potentially allows researchers to considerably speed-
up simulation studies as it is no longer necessary to compute
intersections of obstacles with the line of sight for each
transmitted packet.

Our contributions can be summarized as follows:

• We present a method to reliably predict the LOS/NLOS
probability in urban environments using neural networks.
Given as input the positions of two vehicles and automat-
ically derived scenario characteristics, we achieve a high
prediction accuracy.

• We show how this prediction can be used to derive packet
success rates and an estimation on the communication
load on the receiver side.

• We compare our approach to recent related work and
show that the usage of a neural network outperforms
other methods regarding suitability for wall-clock time
use cases.

• We make available all used training data,
scripts and the neural network itself via
https://github.com/cs7org/neuralVNC17.

II. RELATED WORK

The effect of urban scenarios on vehicular communication
has been studied by both industry and academia. Oishi et al.
examined the influence of the building density within a scenario
on channel characteristics [10]. They use the building density
to describe the influence of the inter-vehicular angle on the
LOS probability between communication partners. To this end,
they consider an artificial road network with solely 90 degree
angles and rectangular buildings. Results derived from this
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Figure 2. Average success rate over distance under LOS and NLOS derived
from simulation of seven urban scenarios in and around Ingolstadt, Germany.

simplified synthetic scenario, however, cannot be transferred
to different topologies of real urban scenarios.

Samimi et al. [11] and Sun et al. [12] define a model de-
scribing the influence of an urban scenario on millimeter-wave
outdoor communication and 5G communication, respectively.
In contrast to Oishi [10], Samimi [11] and Sun [12] conducted
their investigations with real urban scenarios, but they did not
examine the difference in impact on the communication of
various urban scenarios. In paper [13] we presented a new LOS
probability model that predicts different urban scenario types
and outperforms the models of Samimi and Sun. None of these
models take into account the angle between two vehicles which
could be shown to have a decisive impact on the communication
quality [14].

Hadiwardoyo et al. [15] evaluated the packet delivery ratio
at urban intersections by field test measurements and derived
a model that returns a packet delivery ratio dependent on the
distance to an intersection. Their model is applicable to different
types of intersections by the variation of one parameter. In this
paper, we aim to emulate not only intersections but the entire
urban VANET.

Gozalvez et al. [16] conducted field tests in Bologna to



Figure 3. Top: Test setup which uses the emulation of a VANET to generate realistic communication load. Bottom: Structure of the metamodel that computes
if a message of one sender succeeds depending on a certain urban scenario. Hardware in blue, table of LOS probabilities as result of neural network in green.

learn about the influence of urban environments on Vehicle-
to-Infrastructure (V2I) communication. They obtained results
about the impact of obstacles, road network layout, terrain
elevations, vegetation and (heavy duty) vehicles on the packet
delivery rate dependent on the distance between vehicle and
the Roadside Unit (RSU). These field tests showed the decisive
influence of NLOS conditions on the communication quality.
However, authors did not provide any measurable relation
between the influencing factors and the communication charac-
teristics, disallowing the transfer to other urban environments.

With GEMV2, Boban et al. [8] introduced a computationally
efficient link-level simulation approach. It is based on mobility
traces that need to be prepared prior to simulation. It considers
not only buildings but also foliage and vehicles as obstructing
objects. The calculation of signal attenuation is based on
three link types: LOS, NLOS due to vehicles (NLOSv) and
buildings/foliage (NLOSb). Data about obstructing objects are
stored in R-trees. Due to the similar objectives of their approach,
we include a detailed comparison to GEMV2.

In this paper, we introduce a wall-clock time VANET
emulation approach. The core of our approach is the distinction
between LOS and NLOS communication links. For this, we
refer to our previous work [13] where we demonstrated that
LOS probability over sender-receiver distance can be accurately
modeled depending on the type of urban area, e.g., rural or
industrial. We showed that a prediction of LOS probabilities
by topology-describing scenario attributes is feasible and leads
to more precise results than a static categorization of scenario
types.

III. USE CASE

For the development, testing and homologation of V2V-based
services, it is necessary to consider the influence of urban
scenarios on the communication quality. Due to the current
lack of IEEE 802.11p-equipped vehicles on the streets, many
field tests are conducted under somewhat optimistic conditions
in terms of the communication channel. For example, the
amount of wireless traffic competing for the resources of a

receiver’s transceiver unit is usually rather low. As a result,
every successfully received message of any prototype sender
will be decoded almost immediately. To perform field tests
under realistic communication conditions, it is necessary to
equip a sufficient amount of vehicles for the emulation of
a realistic busy urban scenario. In this paper we introduce
a method to emulate realistic communication loads from a
receiver’s point of view based on specific scenario topologies.

The top part of Figure 3 shows one possible integration of
VANET emulation into a test setup for V2V-based functions
and services. The test case consists of two communicating
prototype vehicles, one sender and one receiver, both equipped
with IEEE 802.11p transceiver units. The receiver carries the
function under test that should trigger a certain vehicle action
based on the information contained in a sender’s message,
pictured as “Real Message”. Additionally, there are “Emulated
Messages” arriving at the receiver unit. These represent
the scenario-specific communication load within a VANET,
accounting for a realistic number of messages per time unit. All
these messages will compete for the computational resources
of the receiver’s transceiver unit. The “VANET Emulation”
block represents the model that computes whether a message
can be received successfully based on the simulated senders’
positions. These positions can be generated, e.g., from a traffic
simulator that runs in parallel to the field test. Depending on
the test purpose, the simulated traffic can be either random or
represent real road users with GPS units.

The structure of the VANET emulation model, realized as a
metamodel, is shown in the bottom part of Figure 3. First, both
distance and angle from a simulated vehicle to the real vehicle
are computed. Those two parameters are used to determine the
LOS probability for the communication link using a lookup
table that holds LOS probability values regarding sender-
receiver distance and angle for one specific urban scenario.
The generation of this lookup table using a neural network is a
central contribution of this paper and is described in detail in
Section V. Using a Bernoulli distribution, the value for the LOS
probability is converted into a discrete value, a 1 for LOS and



(a) Historical Center
of Ingolstadt, Germany
(HistCtr)

(b) Feselenstraße, In-
golstadt, Germany (Ur-
ban1)

(c) Richard-Wagner-
Straße, Ingolstadt,
Germany (Urban2)

Figure 4. Three German scenarios of 800 m x 800 m with buildings colored
in red and streets colored in black.

a 0 for NLOS. As shown in Figure 2, the packet success rate
over the distance is considerably different for LOS or NLOS
communication links. Our simulation results show that, once
the communication link has been categorized as LOS or NLOS,
the success rate can be predicted by one function independent
of the scenario’s topology. Again, the Bernoulli distribution
discretizes the success rate into 1 for success and 0 for failure.
As a result, our VANET emulation model provides information
about success or failure for a communication link between one
simulated sender vehicle and the real receiver vehicle. For the
emulation of an entire VANET, these computations need to be
executed for every sending vehicle with an execution interval
corresponding to their respective beacon frequency.

IV. LINE OF SIGHT IN URBAN ENVIRONMENTS

To examine the relation of LOS probabilities and the
topology of urban scenarios we simulated 48 German urban
areas using the Veins framework [6]. For every message
sent and for every possible receiver within a maximum
communication range, we recorded whether it was of LOS
or NLOS nature as well as the sender-receiver distances and
angles. For each simulation scenario we collected data for
about five million communication links. To make the topology
of an urban setting measurable, we define scenario attributes
that reflect the arrangement of vehicles and buildings. In Table
I we list two example attributes describing road network and
building layout.

The simulation results showed that there is a strong relation
between these attributes and the LOS probabilities. We present
results for three of the 48 homogeneous areas in Figure 4.
Scenarios b) (Urban1) and c) (Urban2) are similar in terms
of topology, while scenario a) (HistCrt) shows considerably
different features. These similarities and differences can be
seen in Figure 4 but also by the attributes listed in Table I. The

Table I
SCENARIO ATTRIBUTES OF THE HISTORICAL CENTER AND TWO URBAN

RESIDENTIAL AREAS IN INGOLSTADT, GERMANY

Attributes HistCtr Urban1 Urban2
average length of road segment 87 m 143 m 104 m

number of intersections 1117 57 66

number of buildings 1035 413 251

perc. area covered by buildings 46.4% 24.7% 21.3%

(a) Historical Center Ingolstadt, Germany (HistCtr)

(b) Feselenstraße, Ingolstadt, Germany (Urban1)

(c) Richard-Wagner-Straße, Ingolstadt, Germany (Urban2)

Figure 5. Heatmaps for three example scenarios. The x-axis represents the
angle between the vehicles for a certain communication link and y-axis shows
the distance between them. Lighter colors represent higher LOS probability.

roads in the urban residential areas are longer but less entangled
than in the historical center. The latter one consists of a
significantly higher number of buildings that are arranged more
densely compared to the urban residential areas. Following our
assumption, we expected similar LOS conditions in scenarios
Urban1 and Urban2 and a different picture in HistCtr.

The heatmaps in Figure 5 show the simulation results in
terms of LOS probability coded in colors depending on the
inter-vehicular angle and distance. The lighter the color in the
heatmap, the higher the LOS probability, yellow indicating
hundred percent LOS probability for the communication link,
dark blue representing zero percent. The white spots represent
conditions that did not occur during simulation. The similarity
of the two urban scenarios (Urban1 and Urban2) is indicated by
their similar looking heatmaps (Figure 5b and 5c). Accordingly,
the difference to the historical city center is also evident in the
heatmap (Figure 5a).

To verify the observed similarity within the scenarios Urban1
and Urban2 and their difference to HistCtr, we compute
the Mean Squared Errors (MSEs) between their respective
LOS probabilities. The MSE values for HistCtr compared to
Urban1 (0.0386) and Urban2 (0.0418) are similar and differ
from the MSE between Urban1 and Urban2 (0.0145) even
though there is a high proportion of 0% LOS probabilities
for larger distances in all scenarios that reduces the overall
MSE. This observation supports our assumption of a strong



relation between a scenario’s attributes and the expected LOS
probability. For more details about the scenario attributes
and the introduced examination please refer to our previous
work [17]. In conclusion, this finding opens the door to research
on the usage of the relation between urban scenario topologies
and their LOS probabilities for metamodeling purposes.

V. PREDICTING LOS PROBABILITIES

In Section III we introduced a metamodel-based approach
for the wall-clock time testing of V2V vehicle functions with a
focus on the resource allocation at a receiver’s transceiver unit.
This use case defines the requirements for the metamodel:

1) the ability to determine the communication load in urban
scenarios depending on their topology

2) a performance high enough for wall-clock time tests
3) the possibility to investigate traffic scenarios that change

during run-time

Currently, a variety of software solutions for the simulation
of VANETs is available. For example, the Veins framework [6]
and GEMV2 [8] simulate VANETs on a packet level and
take into account radio wave propagation effects. Both meet
requirement 1. Frameworks like these are well suited for
the development and testing of V2V-based applications in
simulation. Furthermore, through the bidirectional coupling
with a traffic simulator, Veins also meets requirement 3.
GEMV2 on the other hand requires mobility traces generated
prior to simulation. For the use case introduced in Section III,
we require on point and in order arrival of emulated messages
at the real receiver transceiver unit as this is mandatory to
obtain a realistic picture of the competition for processing
resources. To this end, the simulation processing delay has
to be low (or even constant) to accurately emulate the arrival
of messages. To fully satisfy requirement 2, high processing
performance is necessary to prevent the wall-clock test from
time drift. Our simulation studies showed that the performance
of Veins does not meet this requirement as it runs considerably
slower than wall-clock time. The main reason for that is that it
also considers the interference of packets. GEMV2 is promising
in terms of performance, therefore we investigate this approach
in more detail.

The metamodel presented in this paper seems to have two
advantages over GEMV2. Our approach uses a memory and
time efficient neural network instead of large data structures
that limit the area size and the number of vehicles. Additionally,
it requires minimum modeling and configuration effort. The
core of our approach is the prediction of the LOS probability
(see in Figure 3) for any non-trained urban scenario from its
geometrical scenario attributes. The communication technology
and parameters only affect the success rate under LOS/NLOS,
not the LOS probability. We built up a data base by means of
extensive simulations of 48 German urban scenarios using the
Veins framework [6] and the computation of scenario attributes.
In the following, we discuss two estimation methods and their
applicability to predict the LOS probability. We use the term
LOS probability behavior for the matrix of LOS probability

values, in which the rows and columns represent the inter-
vehicular distance and angle in a fixed step size respectively.
The LOS probability for one distance and angle combination
is therefore the value in the corresponding cell in this matrix.

We investigated two different types of neural networks (NN)
for the prediction of any non-trained scenario’s LOS probability
behavior dependent on its scenario attributes. Neural networks
are trained by learning algorithms to produce a specific output
for a certain input. For that purpose a training data set is
required. In the case of supervised learning, the inputs and
corresponding targets within the training data set are known.
To improve the accuracy of a NN during the training process,
it gets modified by using the output error, that is the difference
between the predicted output and the corresponding target in
form of the MSE. As a result, a successfully trained network
is able to estimate the output data for non-trained input data,
provided that the relation between these data sets follows the
same rule. Coming from this very basic description of NNs,
there is a justified assumption that it is possible to estimate
the deterministic LOS probability behavior using NNs trained
with a supervised learning algorithm. There are two types of
NNs that are applicable to this use case: Feed-Forward (FF)
neural networks and Radial Basis Function (RBF) networks.

A. Feed-Forward Neural Networks

We made use of a fully connected FF network, consisting
of three hidden layers. Each of the first two layers holds
eight neurons, the third layer contains ten neurons. The FFNN
was trained using supervised learning with backpropagation
based on a training data set of 48 urban scenarios. Each
scenario is described by eight scenario attributes and 52 200
LOS probability values (one value per combination of angle
in 1◦ steps from 0◦ to 360◦ and distance in 5 m steps up to
725 m). As a result, there are 52 200 · 48 output values and
52 200 · 48 · 10 input values. In preparation for training, the
data set has been normalized. 70% of the training data set
was used for training, 15% for validation and 15% to test the
network’s generalization ability. The partitioning was done
using random index numbers. In summary, the training phase
was configured to consist of at most 1 000 epochs with the
MSE as the performance indicator. If the performance of the
network does not improve within six consecutive tests on the
validation data, it is considered that the NN’s performance
cannot improve significantly and the training stops. After 623
epochs the trained FFNN reached an MSE of 0.0064.

B. Radial Basis Function Networks

A Radial Basis Function is a radially symmetrical function.
Its output value depends on the distance of the input value
from the function’s center. Bishop [18] gives an introduction
into a regression approach based on that function, the Radial
Basis Function Network. These networks consist of a linear
combination of RBFs parametrized by their centers and their
width. In a trained network, the RBFs are centered on the input
data points and fit the target data exactly. For approximation of
the training data we used the orthogonal least squares approach.



(a) Gartenstadt,
Mannheim, Germany
(Test A)

(b) Historical Center
of Muenster, Germany
(Test B)

(c) Kinderhaus, Muen-
ster, Germany (Test C)

(d) Oststadt,
Neubrandenburg,
Germany (Test D)

Figure 6. For validation: Four non-trained German urban scenarios of 800 m
x 800 m with buildings colored in red and streets colored in black.

This approach places the RBFs onto the training data set
consecutively, one RBF per epoch. The next center is put
on the data point with maximum output error of the current
network setup. This process continues until all data points
carry a RBF or until a desired performance indicator value is
reached. With respect to the results achieved with the FFNN,
we chose a comparable performance goal of MSE = 0.005 for
the RBFNN. As the radial basis function we use the Gaussian
function. Input data are 8 scenario attributes of 48 scenarios,
respectively. Based on common guidelines and after some tests
we chose a RBF width of 2 000. The performance goal could
be reached by a network consisting of 16 RBFs out of 48
possible ones with an MSE = 0.0048.

As the MSE represents the squared difference between
estimated LOS probabilities and the target data within a training
data set, its order indicates the quality of a prediction approach.
The LOS probabilities are available as decimals, with a value
of 1 representing 100% and a value of 0 representing 0%.
An MSE of 0.005 (which is more than two powers of ten
smaller than the range of the estimation values) indicates a
high estimation accuracy.

C. Validation of Trained Networks

According to the training results both types of NNs provide
a similar prediction accuracy:

• Feed-Forward: MSE = 0.0064
• Radial Basis Function: MSE = 0.0048

To validate the NNs, they were tested with simulation data
of four urban scenarios that were not part of the training at all
(see Figure 6). To test for over fitting and to ensure whether the
training data set was large enough, a possibly heterogeneous
validation data set is necessary. For fairness reasons, we chose
four scenarios with notably different topologies. If a network

Table II
MEAN SQUARED ERRORS (MSES) OF VALIDATION TESTS WITH

NON-TRAINED URBAN SCENARIOS.

Type Test A Test B Test C Test D
FF network 0.0046 0.0035 0.0051 0.0070

RBF network 0.0047 0.0041 0.0047 0.0083

suffers from over-fitting, it fits well to the trained data, however,
is unable to predict non-trained data, because it even learned
the noise within the training data. This means that an over-fitted
model is not able to generalize the training data and extract
the underlying relations.

The MSE values of the validation data set are depicted in
Table II. Over-fitting can be ruled out as for all four validation
scenarios (A, B, C and D) both NN types achieved an MSE
value similar to the training performance of 0.0064 and 0.0048,
respectively. Due to space constraints we only show the three
of the four scenarios with the highest MSE in Figure 7 (Test
A, C and D). In the first row we present the simulation data,
followed by the FFNN results in row 2 and the RBFNN in
row 3. Visually, the similarity between the simulation data and
the results obtained with the neural networks is evident. This
confirms that low MSE values represent the prediction quality
of both trained networks. The MSE values between prediction
results and simulation data (Table II) are approximately one
order smaller than the one observed comparing the simulation
results for similar urban residential areas (Section IV). This
means that the network results are specific for one certain
scenario and are not too generalized, giving strong indication
that under-fitting is no problem for both the FF and RBF
networks.

D. Discussion of Network Types

Both types of neural networks achieved similar predication
quality. Hence, from the performance point of view both NN
types are applicable for the estimation of scenario-specific LOS
probability behavior. Figure 7 shows an obvious difference in
the texture of the generated heatmaps. While the FFNN creates
an even, smooth heatmap, the output of the RBFNN lead to a
more uneven, ’noisy’ heatmap. Visually, this somewhat rougher
texture is similar to the texture of the simulation results. A
possible conclusion could be that the RBF network’s output
seems to predict the simulation data more appropriately than
the FF network.

At this point, a closer look at the simulation data is necessary.
The data set of one scenario consists of about five million tuples,
each one representing the inter-vehicular distance and angle
along with the information whether the communication link
was LOS or NLOS. The distance and angle values are the result
of a random allocation of 100 vehicles on routes within the
simulated urban scenario. As we used simulation results instead
of real world traces to populate our knowledge base, our results
can only represent the reality in limited quality and quantity.
In further tests, we observed that an increasing amount of
simulation data for one scenario leads to more distance-angle
combinations, which results in a smoother heatmap texture.



(a) Simulation Data Test A (b) Simulation Data Test C (c) Simulation Data Test D

(d) Output of FFNN Test A (e) Output of FFNN Test C (f) Output of FFNN Test D

(g) Output of RBFNN Test A (h) Output of RBFNN Test C (i) Output of RBFNN Test D

Figure 7. Comparison of heatmaps generated using row 1) simulation, row 2) a Feed-Forward neural network, and row 3) Radial Basis Function neural
network. Yellow and blue indicate LOS and NLOS conditions for each communicating link with a certain distance and angle.

Hence, the unevenness of the simulation data is not necessarily
a real property of the urban scenario. Therefore there is no
necessity to consider it within the prediction. As a result, the
visual similarity of the simulation data and the RBF network’s
output is not sufficient to favor the RBFNN over the FFNN.

One difference between both NN types lies within the
training duration. While the training of the FF network lasted
for one hour and fifteen minutes, the RBF network could be
trained in about ten seconds. However, from a user’s perspective
the duration of the training phase does not play a decisive role,
as a potential user would simply use the already trained neural
network. Hence, that advantage of RBF networks is not relevant
in our use case. At this point, we are unable to give a general
recommendation for one type of neural network. A decision
can only be made depending on the use case: For example the
FFNN does not represent the peaks at 90° and 270° as clear
as they appear in the simulation results. This could lead to a
disadvantage in testing safety relevant intersection functions.

VI. COMPARISON TO GEMV2

The metamodel presented in this paper is available as
a sequentially running program that can be coupled with
traffic simulators. In this operation mode, the model processes
mobility data as it arrives at its input and computes possible
communication links sequentially. The metamodel can also be

Table III
COMPUTATION TIME FOR FOUR DIFFERENT URBAN SCENARIOS SIMULATED

WITH GEMV2 AND THE METAMODEL IN SEQUENTIAL (SEQ) AND TIME
STEP (STEP) MODE

Sc. GEMV2 Metamodel (seq) Metamodel (step) Links
A 188.5 s 64.1 s 8.1 s 1 404 891

B 102.8 s 26.8 s 2.5 s 582 704

C 332.3 s 72.7 s 10.1 s 1 624 759

D 168.0 s 76.8 s 10.0 s 1 627 633

used in the same way as GEMV2, that is, running in time
steps and computing packet success rates for all possible
communication links within the last time step. This allows
us to compare our metamodel to GEMV2. Both tools are
implemented in MATLAB.

Table III shows the computation time of GEMV2 compared
to the two metamodel modes. All measurements were con-
ducted on a workstation with a 3.2 GHz CPU and 64 GB
of RAM using the validation scenarios A to D. To achieve
comparability the same number of links (right column in Table
III) as simulated by GEMV2 were computed by the metamodel.

We observe a considerably higher performance of the
metamodel over GEMV2, meaning our approach results in less
time drift regarding wall-clock time. The sequential running



mode, relevant for wall-clock time emulation, provides constant
processing delay per communication link for scenarios with
different topology. It lies within a small range of 4.47 × 10−5 s
to 4.72 × 10−5 s for the tests A, B, C, and D. Therefore, the
metamodel meets requirement 2 concerning constant processing
delay and small drift.

GEMV2 stores geometric and location data of static and
dynamic objects of a scenario in R-trees which get updated
every simulation step. Every communication link between
vehicles is checked for obstruction by static objects, buildings or
foliage, as well as dynamic objects such as vehicles. Therefore,
the computation time per communication link will naturally
increase with the amount of objects within a scenario for
GEMV2, as observed when comparing results for test scenarios
C and D. Test C nearly takes twice the time as test D for
computing a similar amount of links (see Table III). The only
varying parameter between C and D is the number of buildings
(see Figure 6). Using a neural network, there is no relation
between the number of buildings and the performance, because
the influence of the characteristics of the urban scenario was
learned by the neural network during the training phase.

It has of course to be noted that GEMV2 is a deterministic
approach whereas the metamodel is of probabilistic nature.
This determinism comes at a price, and where not needed,
the metamodel seems the better choice. To estimate the
communication and computational load at a receiver side, it
is not relevant which vehicle sent a certain message, but how
many messages arrived in a certain time interval. One possible
way to lower the amount of randomness using the metamodel
is the introduction of a memory, meaning LOS probabilities
are not recomputed if both vehicles have not moved a certain
distance.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to estimate the
communication load in urban vehicular networks. Our method
can be used where wall-clock time performance is necessary,
e.g., when testing real hardware units.

Based on the distance and angle between sender and receiver
as well as a number of scenario-describing attributes, we
showed that Feed Forward and Radial Basis Function neural
networks can be trained to predict LOS probabilities in urban
scenarios with high accuracy. This probability then serves as
an input to determine the packet success rate. This allows
to estimate the communication and computational load of a
hardware device under test, and thus, to test its functionality
under realistic conditions.

In the current version, the metamodel tries to capture the
influence of static objects such as buildings. This could be
extended to also support dynamic objects such as other vehicles
which have been shown to have considerable impact on the
communication quality [19].

Future work also includes extending the presented metamodel
to also support inhomogeneous, city-size scenarios containing
various sub-areas, e.g. by automated identification and separa-
tion of homogeneous areas within one scenario.
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