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Abstract—Green Light Optimized Speed Advisory (GLOSA)
systems aim at giving ideal target speed recommendations to the
driver when approaching a traffic light to lower CO2 emissions
(and fuel consumption) and to reduce the number of unnecessary
stops. These systems have been shown to work well with static
traffic light programs, unfortunately, a large portion of traffic
lights in inner cities are adaptive and can change their behaviour
with almost no lead time.

This paper presents and validates (using field tests and
simulation) a method to help overcome this problem and forecast
fully and semi-adaptive traffic lights. First, we transformed the
state graph of the traffic light controller into a transition graph
focusing on signal changes and their occurrence probability. We
then reduced routing possibilities within the graph using real life
observations and recorded detector data of the traffic light. We
further optimized our system in terms of needed storage and
computationally efficiency. Our results show that in 80 % of all
cases we could predict signal changes 15 s in the future with
a high enough accuracy to enable GLOSA for adaptive traffic
lights.

I. INTRODUCTION

Green Light Optimized Speed Advisory (GLOSA) systems,
that is, the recommendation of an optimal speed to pass a
traffic light just after it turned green, have been shown to
be able to reduce CO2 emissions and fuel consumption by
up to 13 % [1], [2]. The basic principle is to calculate this
speed recommendation based on the distance to the traffic
light and the time to the next signal change. The latter is
wirelessly transmitted to the vehicle using IEEE 802.11p [3]
communication or cellular network technology such as UMTS
or LTE. These messages are referred to Signal Phase and
Timing (SPaT) messages [4] and have also been standardized
for ETSI ITS G5 [5].

Forecasting and thereby enabling GLOSA for non-adaptive
traffic lights is trivial as they run their static program in an
endless loop. These traffic lights only need a power supply
and a clock with no additional communication technology as
the signal changing times could be transmitted via cellular
networks from a centralized server that has knowledge of all
traffic light programs. However, to improve traffic flows more
and more traffic lights become adaptive and are able to react
to certain traffic conditions. As an example, in the city of
Hamburg, Germany over 95 % of all traffic lights are adaptive.
These traffic lights can ’decide’ to change their signal with
lead times as short as 1 s and are therefore complex to forecast.
Because the traffic light controller is stimulated by external

inputs it cannot forecast own future behaviors itself. Not being
able to predict these signal changes would have a considerable
impact on the success and applicability of GLOSA systems in
future intelligent transportation systems.

Adaptive controllers can vary in semi adaptive and fully
adaptive behavior. While semi-adaptive controllers do not
alter the order of signals but only their length, fully adaptive
controllers can also change the order of signals and even leave
unneeded ones out. Adaptive traffic lights can be stimulated by
many different inputs. The most important ones are detectors in
or above the street to measure the number of approaching and
departing vehicles. Detectors for pedestrians, strategic control
signals from traffic management centers, or the prioritization
of emergency vehicles can also be relevant for the behavior of
the traffic light.

This requires adaptive traffic lights to be equipped with
a communication device to transmit their current detector
occupation in order to be forecast reliably. This information
can either be used locally to predict the signal behavior and
disseminated in an ad-hoc fashion using IEEE 802.11p or it
can be sent to a central service provider where it is evaluated
and then sent back to approaching vehicles using cellular
communication.

In this paper, we present a method to also enable GLOSA for
fully adaptive traffic lights. For this, the traffic light program
(represented by a graph where each node is a distinct state of
the traffic light and transitions represent the signal changes) is
transformed to a transition graph focusing on the signal changes.
Each transition is assigned a certain probability, based on real
life observations and the use of detector data provided by the
traffic light. These probabilities can then be used to predict
the signal change and give the driver a speed recommendation.
Our system is validated by means of simulation and is already
installed in large test beds in the city of Ingolstadt. We were
able to show that it works with high accuracy and therefore
provides a significant contribution to the successful operation
of GLOSA systems.

The remainder of this paper is organized as follows: In
Section II we discuss related work in the field. Section III
describes the basic approach to forecast adaptive traffic lights
which is then further optimized in Section III-C. In Section IV
we discuss our simulation results followed by a short overview
where our system is already installed (Section V). Section VI
concludes the paper and discusses directions for future work.



II. RELATED WORK

GLOSA systems date back to as early as 1983 when
Volkswagen introduced the Wolfsburger Welle, a driver as-
sistance system that informed approaching drivers about the
signals of infrared communication enabled traffic lights [6].
Although the project was discontinued at the time, the concept
was picked up again in 2009 by the Travolution project [7]
that instead of infrared used IEEE 802.11p communication and
showed that GLOSA is a promising approach to lower CO2

emissions and fuel consumptions. Since then GLOSA systems
have been a part of many projects and field operational tests
such as PREDRIVE C2X [8] or simTD [9].

Impact and potentials of Green Light Optimized Speed
Advisory have been the focus of many publications [1], [2],
[8]. Based on extensive simulations, these papers offer valuable
clues to what extent CO2 emissions can be lowered, fuel be
saved, and how many stops could be avoided. The publications
more or less agree that a potential benefit of about 13 % of
emission reduction can be reached when all traffic lights are
static and all vehicles are equipped with the GLOSA device.

Focusing on optimizing the system itself, for example
by recommending not only the speed but different driving
strategies or considering the current queue length at the traffic
light was covered in [1], [10]–[12]. It has been shown that
when these parameters are considered, the system can even
further decrease the number of unnecessary stops and reduce
consumption and emissions.

Unfortunately, almost all literature is based on the assumption
of traffic light programs to be static allowing a trivial forecast
of the signal changes. In the 10 biggest German cities, about
73 % of all traffic lights are fully or semi-adaptive. This fact
would therefore considerably reduce the benefits introduced by
GLOSA systems that only work for static traffic lights.

In his mathematical prognosis approach for adaptive traffic
lights Weisheit describes the usage of Support Vector Machines
(SVM) to recognize similar traffic conditions to improve the
prediction accuracy [13]. This requires a large knowledge
base to provide enough sample data and was shown to reach
a forecast quality of 83 % using the observations from 40
operation hours. He focuses on only one direction of signal
changes, that is, from green to red. However, GLOSA systems
mainly build on the prognosis from red to green to inform
drivers by how much lower the recommended speed has to be
to arrive shortly after the traffic light turns green.

In this paper we show how to bridge the gap of missing
prognoses at adaptive traffic lights to help ensure that speed
recommendations can be given at every traffic light to fully
use the potential of GLOSA systems.

III. APPROACH

A traffic light program for all traffic control signals at a
given intersection can be described by the controller graph. This
graph is the most important input parameter for our approach
and needs to be provided by the operator or can be generated
by observing the report messages of the traffic light itself. One
node in this graph represents an entire state of the traffic light,

that is, the signals for all lanes. An edge between two nodes
means that there is a possible transition from one state to
another. (See Appendix, Figure 7 for a real controller graph for
a traffic light in the city of Ingolstadt provided by the operator.)

The transition is a short static program that starts with the
signaling of the source node (e.g., lanes 1 & 3 green, 2 & 4
red) and ends with the signals of the destination node (e.g.,
lanes 1 & 3 red, 2 & 4 green). All signals must be changed
in a save order, including amber phases and sufficiently long
blocking times for the intersection to be cleared. Each time
a transition is triggered the traffic light reports this event to
the operator. These reports are also used as sample data in our
approach. Depending on the level of adaptivity a prediction
can start with sample data of 75 min from comparable day
classes and time windows.

To account for highly dynamic traffic conditions we introduce
day classes and time windows as described in [14]. This means
that each reported signal change is categorized by the type of
day (e.g. Monday, Vacation) and by the time window it is in
(e.g. 11:00 am till 12:00 pm). The recorded data can then be
used to predict signal changes more accurately. This requires
a complete calendar including holidays, school vacation, or
even sports events for the city in which the traffic light is
located. Especially for rare day classes a longer learning phase
is necessary to collect enough data for the forecast to function
properly.

A. Graph Transformation

A controller graph consists of nodes for all allowed signal
combinations and edges for possible transitions between them.
As this graph focuses on the signals rather than the signal
changes we transform this graph to a transition graph to be
able to reliably predict the order and the time offset of the
transitions. The transformation of the original controller graph
G into a transition graph G′ (as illustrated in Figure 1) can be
done using the following equations:

G = (V,E, f, g) (1)

=
∑
∀i

Ci with C ⊆ G and C = x0 . . . xk−1x0 (2)

ϕ : V → V ′ with xy ∈ E ⇔ ϕ(x)ϕ(y) ∈ E′ (3)
ϕ : ϕ(x) = g(wx) with wx ∈ E (4)
G→ G′ (5)

G′ =
∑
∀i

C ′i with C ′i = ϕ(Ci) (6)

The controller graph (G) is a node (f ) and edge labeled (g),
finite and strongly connected digraph (1). Therefore it can also
be displayed as a sum of all its cycles (2). Each circle is one
possible path through the controller graph with no branches.
It is also possible to create an isomorphism (ϕ) that does not
change the topology of each circle (3) but transforms the label
of the nodes by replacing them by the label of the incoming
edge (4). The transformation of the controller graph into the
transition graph (5) is the sum of all transformed cycles (6).
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Figure 1. Graph transformation

Nodes in the transition graph represent the transition and
the edges show which transition can possibly follow up. The
costs of the edges can be used to store data needed to forecast
the next transition correctly.

B. Probability Assignment

To forecast a traffic light the occurrence of its transitions
has to be predicted. Therefore the correct order of transitions
and their length have to be determined.

If there are multiple possible transitions, that is, one node
in the transition graph has more than one successor, each
transition has to be assigned a probability. These probabilities
can be calculated based on empiric data collected from the
traffic light using Equation (7). The equation is also used to
calculate the occurrence probabilities between two consecutive
transitions for all possible offset times.

P

{
Γt = (µ, i, j)

∣∣∣∣∣
(

Λt = (µ, i)

)
∧
(
Z(t−µ) = h

)}
(7)

The equation describes the probability for the occurrence
Γ of a distinct transition j at a certain point in time t and
with i to be the last observed transition µ seconds earlier.
The first constraint is transition i to be the direct predecessor
of transition j with the predecessor running for µ seconds
till time t. The second condition takes the day class Z into
account, that is, all considered sample data requires the same
time classification h as it was present at time t− µ.

All required information to forecast traffic signal phases
can now be assigned to the edges in the transition graph. An
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Figure 2. Final transition graph

example final transition graph is shown in figure Figure 2.
The sum of all outgoing edges from a transition must always
be 100 %, i.e. at branches the assigned probability indicates
which transition is more likely to follow. Additionally, every
edge also holds information about the minimum, the maximum
and the most likely offset time. These values are required for
the optimal operation of a GLOSA system: As vehicles ap-
proaching an intersection are often bound to surrounding traffic,
it is not always possible to drive at the exact recommended
speed. In these cases, minimum and maximum times can be
used to determine whether the current speed is also acceptable.
Also, when operating on low confidence forecasts, on-board
applications can decide to aim for the earliest or latest change
time instead.

C. Graph Extension

A critical section in the transition graph are nodes with more
than one possible successor. For the forecast system to work
properly edges are desired to be assigned a high probability.
Assume a main road with a simple traffic light program
alternating to allow the merging of traffic at a crossroads. In
the transition graph this would lead to two outgoing branches,
each with a probability of 50 %. In this case, a prediction solely
based on the assigned probabilities cannot meet the quality
requirements for a GLOSA prognosis.

One possible approach to counter this problem is to also
account for transitions before the current one. By looking
back in the transition graph it can become considerably easier
to forecast the next transition. Information about previous
transitions could also be merged into the edge costs, but instead
of bloating the information assigned to the edges we decided
to clone affected nodes to represent this additional knowledge.
It is not required to clone every node in the transition graph,
but only nodes between branching and merges because for
these nodes the path from the last merge needs to be taken
into account.

The benefit of this method is shown in Figure 3. While in
the upper, non-extended graph the probabilities for transition
2 and 3 to follow transition 1 are equally 50 %, cloning nodes
1 and 4 to store one step of history creates edges with 100 %
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Figure 3. Graph extension to eliminate low probability edges

probability allowing the lower transition graph to be used for
GLOSA prognosis.

In theory, we could create even more clones to store longer
histories and thereby more complex alternations, however, in
real life most traffic lights do not toggle between more than
two paths. All other and more complex decisions of traffic
lights are made with the help of detectors.

D. Using Detectors

Fully and semi-adaptive traffic lights are stimulated by
detectors and triggers. These sensors have a major impact on
the signal phases as they make it possible to consider current
situations to improve traffic flows. Therefore, a prediction of
adaptive traffic lights of good enough quality to be used in a
GLOSA system is not possible without taking detectors into
account.

Detectors and triggers can be categorized into three basic
classes:
• vehicle, bus and pedestrian detectors
• emergency vehicle triggers
• traffic management triggers (used by the operator)
To include the current state of a detector in the prognosis,

traffic lights need to be equipped with communication devices
to transmit this information to the back-end of the forecast
system, where all edges in the transition graph are assigned
probabilities. Each transition can depend on a different set of
detectors. To keep the complexity at a manageable level we ran
a χ2 analysis to only consider detectors for a transition that

really have a considerable influence. Extending Equation (7)
to account for detector states yields:

P

{
Γt = (µ, i, j)

∣∣∣∣∣(∧κy=1(Dyt = dy)
)
∧
(

Λt = (µ, i)

)
∧
(
Z(t−µ) = h

)}
(8)

In addition to the constraints from Equation (7), we now
only consider sample data with the same detector occupation at
the intersection for all κ relevant detectors

(∧κ
y=1(Dyt = dy)

)
.

This extension allows the consideration of the first class of
detectors, that is, vehicle, bus and pedestrian detectors.

The second class of detectors, the emergency vehicle triggers,
sets the traffic light in a special mode to give way for said
vehicles. While the traffic light could forward the trigger signal
to the prediction service as long as it is present, the traffic light
does not know how long it will remain in this special mode. In
these circumstances the forecast mechanism is likely to have
a low accuracy. Additionally, warning sirens and emergency
lights of the emergency vehicle would overrule the traffic light
anyway, therefore we decided to stop the prognosis service
while emergency triggers are active.

The last type of detectors are steering commands or preset
parameters from a traffic management center. These commands
are not yet standardized and are incorporated into each traffic
light controller program individually. At this point, we decided
to ignore this class of triggers and to not adjust every transition
graph separately but to aim for developing a generic architecture
for all traffic lights. This will be the focus of future work to
further improve the prognosis quality.

E. Simplification

The use of detector data increases the number of data
sets required for an accurate forecast enormously. Even after
eliminating all irrelevant detectors for a transition, the number
of relevant detectors can still be large. As edges in the transition
graph have to cover all possible combinations of detector
occupations, this may cause a problem in computational
efficiency possibly introducing latencies. Furthermore, this can
become a difficult requirement for the database storage and
the amount of sample data needed to run a proper prognosis.

As no vehicle can trigger more than one detector when
driving through an intersection, we treat all detectors mounted
to the traffic light as statistically independent to each other.
This allows us to compute the signal change probability as:

P

{
Γt = (µ, i, j)

∣∣∣∣∣
(

κ∧
y=1

(Dyt = dy)

)
∧
(

Λt = (µ, i)

)
∧
(
Z(t−µ) = h

)}
=

∏κ
y=1

(
P

{
(Γt = (µ, i, j))

∣∣∣∣ (Dyt = dy) ∧
(
Z(t−µ) = h

)
∧ (Λt = (µ, i))

})
(
P

{
(Γt = (µ, i, j))

∣∣∣∣ (Z(t−µ) = h
)
∧ (Λt = (µ, i))

})κ−1

(9)
Assume a traffic light with 4 detectors (Dyt), that can either

be occupied (=1) or free (=0). The detector state for the traffic
light can then be coded as a 4 bit vector, e.g. (1010). To
compute the transition probability with an occupied detector 1,
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we’d need one edge in the transition graph for each possible
permutation (1000), (1001), ... (1111). The simplification
allows us to compute the transition probability for one specific
detector set as the product of each single detector probability,
yielding a transition probability for the state (1xxx) as stated
in Equation (9). The full proof can be found in the Appendix.

This simplification introduces several benefits: For the
GLOSA system to work accurately, now considerably less
empiric data is needed as each recorded data set can now
be analyzed independently for each detector. This makes it
easier to start the prognosis service with fewer sampled data
(e.g. in the roll-out phase) and allows for an easy alteration
of relevant detectors for certain transitions. Furthermore, the
system performance itself can benefit from Equation (9) as the
computations become less complex and the needed storage in
the database back-end can be reduced. Although the quality
of the prediction does not benefit from this, this performance
optimization can have a positive impact on the roll-out of
GLOSA systems.

F. System Architecture

Figure 4 shows the data flow and the final architecture of
our approach. Raw data collected from the traffic light (e.g.
detector states and current signals) is decoded and stored to a
database to continuously enlarge the knowledge base. Based
on this knowledge base a transition graph including transition
probabilities can be generated. Taking into account the current
detector states, the time of day and so on, a prediction of the
next signal change can be made. Part of every prediction is
the confidence of the forecast so every receiver can judge the
usefulness of the prediction separately. This forecast is put into
a SPaT message that is transmitted to approaching vehicles
via IEEE 802.11p or cellular communication. The on-board
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Figure 5. Example for increasing the prediction accuracy using historic and
detector data

unit of the vehicle can then give out a speed recommendation
to the driver, for example by displaying them on the head up
display.

The enhancements described in this paper all aim at
narrowing down the time window to the next possible signal
change. Without the usage of cloned nodes, detectors, or historic
data a possible distribution of signal change times would be
rather wide as illustrated in the upper part of Figure 5. Using
said enhancements these distributions can be made considerably
narrower allowing for the transmission of minimum, maximum,
and most likely signal changing times. This is illustrated in
the lower part of Figure 5.

Unfortunately, not all traffic lights can be sufficiently
optimized this way. Therefore, in addition to the prediction
of the signal change time, the prognosis also requires a value
to reflect its confidence. This value needs to be assessed
carefully and included in the transmitted SPaT messages. One
possible approach to obtain confidence values is to look at the
quality of past predictions as described in the next section. By
transmitting the confidence of every forecast each receiver can
judge separately whether to use this information or to wait for
another forecast with higher confidence but less time to react.
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Figure 6. Prediction accuracy of our system for signal changes up to 30 s in the future

IV. TRACE DRIVEN SIMULATION

Although our method is applicable for every traffic light, each
traffic light is unique and needs some individual parameters
such as the number of required data samples or the set of
relevant detectors for a transition. This knowledge is built up
in a learning phase by a trace driven simulation that iteratively
improves the quality of the forecast. The simulation output is
continuously compared to the real signal phases allowing to
assess the current quality of prediction. Only after reaching
the required accuracy the system will go live for a particular
traffic light.

A. Simulation Setup

For the evaluation presented in this paper we predefine a
specific assessment time slot of about 1 hour. All real recorded
data (i.e., detector states, current signal) from this time slot is
then used as a simulation input. In our simulation, the learning
phase has already been concluded and the transition graph has
been fully build. Every second our systems tries to predict the
time to the next signal change. This prediction is logged and,
after the simulation has finished, compared to the real value at
the time.

This is the same process used in the learning phase to identify
the most important parameters for a traffic light.

The output data can be used to rate the prognosis itself
and determine the confidence value. By storing these values
the prognosis service can determine how many forecasts were
absolutely correct or by how much they deviated and can
therefore give a confidence for the prognosis that is transmitted
to the approaching vehicle. This is important, as SPaT messages
include an extra field for the prognosis confidence. This
information can be used by the on-board unit to judge whether
the confidence of the received forecast is high enough to inform
the driver or if it is preferable to wait for another forecast with
less reaction time to the traffic light change but with a higher
confidence.

In general, quality assessment for the prognosis algorithm
can also be done for just one signal change direction, e.g.,

from red to green. Application development requires separate
confidence values for each direction to determine whether
the confidence values are high enough for a given lead time.
For example, GLOSA systems mainly focus on red to green
changes (by how much does the driver need to decelerate to
arrive when the traffic light turns green) while the main interest
of autonomous driving is the forecast of green to red changes.

B. Results

Figure 6 shows the results for our trace-driven simulation.
The forecast deviance is the time by how much our prediction
algorithm was wrong. Predictions for signal changes more than
30 seconds in the future are not transmitted because they are
likely to be inaccurate and even if not, to not have a positive
effect on traffic efficiency as the vehicle is too far away [2].
For each data set, a box is drawn from the 25% to the 75%
quantile; the thick line is the median. Whiskers extend from
the edges of the box towards the minimum and maximum of
the data set, but no further than 1:5 times the interquartile
range. Data points outside the range of whiskers are drawn
separately.

When the signal change is longer than 15 s in the future, the
prediction accuracy of the system is good most of the times,
but tends to over/underestimate the remaining time. For longer
forecast times a higher deviance is acceptable because the time
to react is also high. At times ≤ 15 s the accuracy noticeably
increases with a deviance of less then 2 s in about 80 % of
all cases. Our algorithm was able to reliably predict signal
changes 6 s or less in the future with an accuracy of over 95%.
The variance of the data can also be used to determine the
confidence of the information which is then handed to the
receiving on-board unit to decide whether to recommend a
speed the driver.

Close to the signal change the traffic light has less degrees of
freedom due to amber phases and blocking times. This results
in the low deviance for the last seconds of the forecast.



V. FIELD TESTING

Our main testbed is located in Ingolstadt (Germany), where
we tested both ad-hoc and cellular communication based
GLOSA systems. For the IEEE 802.11p [3] approach, we
equipped 10 traffic lights with Roadside Units and connected
to them the traffic light controller. For these traffic lights SPaT
messages were locally available on an ITS channel in the
5.9 GHz from the years 2012 to 2013.

A centralized approach was evaluated using more than 50
traffic lights in Ingolstadt that were modified to continuously
report their status to a central server, where the prognosis
service can be queried via internet. Compared to the ad-hoc
method this system is more cost efficient and can be rolled
out easier. Querying the central server did not introduce a
problematic latency as the included timestamps could be used to
properly evaluate the contents of the received SPaT messages.

For our testbed we use different deviance thresholds to
determine when a forecast should be used to inform the driver.
In the last 10 s prior to a signal change the deviance has to
be less or equal 1 s. Between 10 and 20 s before a traffic light
change a deviance of 2 s is acceptable. For predictions of up to
30 s prior to a change a deviance of 3 s is considered a good
prognosis.

Additionally to our experiments in Ingolstadt we brought our
expertise to several other FOTs like simTD [9] in Germany or
DRIVE C2X [15] and several other all over Europe. We also
started the testing of GLOSA applications in the US where we
had a first presentation on this year’s Consumer Electronics
Show in Las Vegas.

VI. CONCLUSION AND FUTURE WORK

Green Light Optimized Speed Advisory (GLOSA) systems
have been shown to be a promising approach to improve traffic
flows and reduce CO2 emissions. Until now, almost all related
research assumed static traffic light programs. Unfortunately a
large portion of traffic lights are adaptive and can start signal
transitions with lead times as short as 1 s.

In this paper we presented a methodology to enable GLOSA
also for fully and semi-adaptive traffic lights. Based on a
knowledge base containing empiric data such as signals at
a given time of day and the state of detectors for vehicles,
buses, or pedestrians we were able to predict a traffic light
change 15 s in the future with an accuracy of over 80 %.
We further optimized our approach to reduce computational
complexity and reduce the amount of storage needed in the
back-end. Our approach was validated in both simulations and
real life experiments in a large test bed in the city of Ingolstadt,
Germany.

Future work includes the enhancement of our approach
to further increase the prediction accuracy by, e.g., also
considering traffic management commands by the operator.
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APPENDIX

A. Real Controller Graph
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Figure 7. A traffic controller graph as provided by the operator

B. Proof of Equation 9
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