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Abstract—Green Light Optimized Speed Advisory (GLOSA)
systems have been shown to be able to reduce both CO2 emissions
and fuel consumption by giving drivers speed recommendations
when approaching a traffic light. For the system to reach
its maximum potential, is is necessary to properly predict all
different types of traffic lights, that is, also adaptive traffic
lights where signals may change with lead times as short as
1 s. In previous work we presented an approach to predict these
adaptive traffic lights using graph transformation.

In this paper we demonstrate how to adequately parametrize
such a graph based prediction approach and evaluate the
accuracy of the signal prognosis. In a first step, we find feasible
values for the proper creation of the prediction graph. This graph
is the basis for all predictions and therefore directly influences
the quality of the prognosis. We then assess the forecast in
terms of correctness and deviation to measure the accuracy of
the predictions. We were able to show a prognosis system with
an accuracy of 95% and a deviation of less than 2 s. Lastly,
we discuss some criteria to compare different approaches of
prognosis systems for adaptive traffic lights.

I. INTRODUCTION

Green Light Optimized Speed Advisory (GLOSA) systems
recommend an optimal speed to the driver to pass a traffic light
without an unnecessary stop. These systems have been shown
to potentially reduce CO2 emissions and fuel consumption by
up to 13% [1], [2]. The main inputs for a GLOSA system
to calculate the optimal speed are the distance to the next
traffic light and the time to the next signal change. By using
IEEE 802.11p [3] based communication or cellular network
technology such as UMTS or LTE, information about signal
changes can be transmitted to approaching vehicles. In the
European ETSI ITS-G5 [4] system and the North American
IEEE WAVE [5], this functionality is supported by the recently
standardized Signal Phase and Timing (SPaT) messages [6],
[7].

In [8] we have shown the necessity for a prognosis system
that includes not only traffic lights with fixed programs but
also adaptive traffic lights. Especially in larger cities, where
adaptively controlled intersections comprise the vast majority
of traffic light controlled intersections (≈ 75% in the 10 largest
cities in Germany), a GLOSA system only supporting static
traffic lights would not perform well. Signal changes for these
intersections are complex to forecast because their controller
can ’decide’ to change signals with lead times as short as 1 s.
The need for an external prediction is based on the fact that

the controller is stimulated by external inputs, e.g., vehicle and
pedestrian detectors, and is therefore unable to forecast its own
behavior.

GLOSA systems are an important part of future Intelligent
Transportation Systems (ITS) and should be available for all
different types of adaptive traffic lights. Adaptive traffic lights
range from semi-adaptive controllers that don’t change the
order of signals but only alter their length to fully adaptive
controllers with the ability to change every aspect of its
program. The most important inputs for these traffic lights are
detectors. They can count vehicles, detect waiting pedestrians,
or identify approaching buses or emergency vehicles. Each of
them stimulates the controller and can change its behavior. It
is therefore crucial for a prognosis algorithm to consider these
detectors as they have a significant influence on the signal
transitions of an adaptive traffic light.

In a previous paper [8], we introduced an approach to
forecast these dynamic signal changes by using graph transfor-
mation. The traffic light controller program, represented by the
controller graph, focuses on the static phases. This graph is
transformed to a prediction graph with assigned probabilities
for the next transition. Once the probabilities are derived from
real life observations (including detector occupation and other
input signals provided by the traffic light) a prediction can be
created by traversing the prediction graph and processing the
attached information at each edge.

In this paper we evaluate several parametrizations of our
prognosis approach to create a feasible prediction graph. A
prediction graph is considered feasible when each possible
branch has a high routing probability and the offset times
for each change have very low deviation compared to real
traffic light behavior. In a best case scenario, there would be
no deviation and the predicted time to the next signal change
would always be correct. To improve the prediction accuracy,
the benefit of day classes as described in [9] is analyzed and
the influence of varying amounts of sample data is evaluated.
We then assess how to select the right detectors and how they
can be taken into account to derive a better prognosis. The
evaluation of these different aspects allowed us to optimize
the parametrization for our prognosis approach.

The remainder of this paper is organized as follows: In
Section II we discuss related work in the field followed by
Section III with an introduction to traffic light controlling and



our approach for the prognosis of fully adaptive traffic lights.
Section IV describes several stages of development and assesses
their impact on prognosis accuracy: We first take a look at
different approaches and their parametrization (Section IV-A
and IV-B). We investigate the influence of detectors on signal
changes (Section IV-C) and present the overall accuracy of
our prognosis system (Section IV-D). In Section IV-E we
review limitations of our system, followed by a discussion on
how comparisons between prognosis systems can be improved
(Section V). Section VI concludes the paper and gives an
outlook on future work.

II. RELATED WORK

GLOSA systems date back as far as 1983, when the Wolfs-
burger Welle was introduced by the German car manufacturer
Volkswagen [10]. This system already contained the core aspect
of informing the driver about upcoming traffic light signal
changes. Low market acceptance and technical difficulties
lead to the discontinuation of the project. The introduction
of IEEE 802.11p communication brought up new possibilities
for data exchange between vehicles and infrastructure, allowing
the Travolution project [11] to restart the work on GLOSA
systems in 2008. Since then several other projects such as
simTD [12] or PREDRIVE C2X [13] followed.

Various publications [1], [2], [13] used extensive simulations
to offer indications to what extent stops can be avoided, fuel be
saved, and CO2 emissions be lowered. Most publications agree
on a potential emission reduction of ≈ 13% if all vehicles and
all traffic lights are equipped with ITS devices. Further, the
optimization and the extension of the system (queue length
estimation or different driving strategies) to further decrease
CO2 emissions were covered in [2], [14]–[16].

In [17], Protschky et al. describe how to predict traffic lights
by using floating car data. Like many other approaches they
focused on static traffic lights only making their system not
applicable for the majority of traffic lights in larger cities.

In [18] Weisheit introduces a mathematical prognosis ap-
proach using support vector machines. His system is one of
the very few projects aiming at enabling GLOSA for adaptive
traffic lights and reaches an accuracy of up to 83%. The
presented approach requires a large knowledge base and a
learning phase of about 40 hours. Unfortunately he gives no
indication on how early forecasts can be given, which is one
of the main requirements for GLOSA systems.

In [8] we presented a method to predict adaptive traffic lights
using empiric data and graph transformation. In this paper we
present an extensive evaluation of this system and show how it
can be parametrized to further improve the prediction accuracy.

III. TRAFFIC LIGHT CONTROLLING AND PROGNOSIS

Traffic lights are an easy and common way to regulate
competing traffic flows. Competing flows include, e.g., crossing
lanes on an intersection or pedestrian crossings on the road. By
stopping one traffic flow and giving way to another potentially
dangerous situations can be resolved safely.

Each traffic flow usually has its own traffic signal that
visualizes whether this flow is stopped (red light) or opened
(green light). All signals on an intersection are connected to a
traffic light controller that manages the intersection and operates
the signals to take care that two competing traffic flows are
never open at the same time.

A widespread type of traffic light controller is a very simple
one that uses a fixed program, that is a precise sequence of how
long and in which order each traffic flow is opened and closed.
The sequence is repeated endlessly and for each second in this
sequence it is fully deterministic which signal shows which
color. To account for different volumes of traffic, these traffic
lights can be extended to run different programs depending on
the day and the time of day. However, these controllers still
cannot react to the current traffic they are supposed to manage.

The next step in the evolution of traffic light controllers
was to equip the controller with detectors that measure the
volume of traffic on each flows. This can be done by induction
loops in the lane (counting passing cars or detecting permanent
occupation), by buttons for pedestrians, by radio signals (e.g.,
from buses), or by visual detection systems. A traffic light
controller equipped with detectors is called ’traffic adaptive’.
There are two kinds of adaptive controlling: the first is to
keep a predefined order of signal changes but to change only
the duration of the signals depending on current traffic. The
second kind is a fully adaptive controller, where also the order
of signal changes can be altered dynamically.

The operation of a traffic light controller consists of two
kinds of phases, namely states and transitions. States are static
phases where some traffic flows are opened and others are
stopped. Transitions are phases where the traffic signals change
and active flows are stopped and subsequently competing flows
are opened. Together they can be displayed in a so-called
controller graph.

The program of every fully adaptive traffic light controller
can be visualized using such a graph, showing all possible
signal combinations. Each node in the graph symbolizes a static
state which is kept for a certain time to let an opened traffic
flow pass the intersection. Each edge in the graph symbolizes
a transition, that is, a short program that changes the traffic
control signals in a safe order with long enough amber phases.

An example controller graph for a fully adaptive traffic light
alongside the managed intersection is shown in Figure 1.

The traffic light controller can trigger a transition with a lead
time of 1 s, making it difficult for GLOSA systems to predict
these changes. In [8] we introduced a prediction algorithm
that transforms the controller graph into a prediction graph
(or transition graph), as the main goal of a GLOSA system is
to predict the time of the transitions, and not the static states.
Converting the controller graph of Figure 1a results in the
prediction graph shown in Figure 2.

The transformation is done by dividing the controller graph
into separate circles, converting the circles into transition-based
circles, and combining the converted circles to form a new
prediction graph. In the prediction graph, nodes represent the
transitions of the traffic light and edges can be used to assign



OpenCPedestrianCFlow
OpenCVehicleCFlow

1

9

10

2

11

3

4

8

5

6

7

A

B

C

D

E

F

(a) Controller graph (b) Intersection topology

Figure 1. Controller graph (a) and corresponding simplified intersection topology (b)

probabilities and offset times based on empirical data. When
this assignment is done, predictions can be given by simply
traversing the prediction graph.

Furthermore, we use different probabilities and offset times
depending on day classes and time windows as introduced
in [9]. This means, that predictions for one certain time of
a day are only based on observations for similar time slots.
Interestingly, the time slots where GLOSA systems can reach
the highest benefit are not rush hours, but times with low or
medium traffic volumes [2]. The reason for this is the much
higher degree of freedom for the traffic light controller if the
same detectors are not occupied over and over again as this
would lead to the same traffic light behavior. Additionally,
drivers have only limited possibilities to adapt their speed in
heavy traffic.

IV. EVALUATION OF SYSTEM ACCURACY

Comparing different prognosis approaches is a non-trivial
task as the parameters to consider in these systems are manifold.

First, two prognosis systems can only be compared using
the same intersection and traffic light, as these combinations
are more or less unique. This alone is a difficult task because
each project working on GLOSA systems uses its own test-bed
and there exists no common reference traffic light yet. Even if
prognosis systems are compared using the same intersection
and traffic lights, results may be misleading when investigated
under different traffic conditions. Ideally, both system would be
evaluated under the exact same conditions. Without a common

scenario, the variance of different traffic light types and their
degrees of freedom makes it difficult to interpret forecast results.
For example, it is misleading to compare a system predicting
the behaviour of a fully adaptive traffic light with one that
forecasts a traffic light with much fewer parameters.

Another challenge is the choice of metrics. Naturally, one
would compare the prediction of the prognosis system (e.g,
”5 seconds until the traffic light turns green”) with the actual
observation. However, the quality of the prognosis usually
strongly depends on the lead time to the signal change, that is,
how early the forecast has been given. A traffic light controller
is stimulated by traffic via detectors and can change its behavior
with very short lead times. Therefore it is easier to predict the
next transition shortly before it happens than giving a prognosis
when the triggering conditions were not present. To account
for all these difficulties we created two reference traces.

The first trace was recorded for a common intersection in
Ingolstadt, Germany in medium, consistent traffic (2pm till
3pm on a regular Monday) to give the traffic light controller
enough degrees of freedom to work in the fully adaptive mode.
The second trace we used serves as a worst case scenario for
the prognosis algorithms as it was recorded at the beginning
of rush hour with sharply changing traffic (from 4pm till 6pm
on a regular Monday).

To consider the strong causality between lead time and
prognosis quality, we do not give a single value for the
prognosis accuracy but plot the forecast quality over the
time to the next transition. This is achieved by storing all



forecasts given by the system and subsequently sorting them
according to their lead time allowing us to analyze the prognosis
deviation w.r.t. to the time to the next signal change. Using this
methodology we compare different approaches and different
parametrizations.

A. Development Stages

In the beginning of the Travolution project [11] we started
with the assumption that ’traffic changes slowly’ to simplify
the problem of adaptive traffic lights. This assumption implied
that observing the recent and current behavior of the traffic
light controller is sufficient to forecast upcoming transitions. If
the assumption was right, the behavior of the traffic light would
change as slowly as the traffic leading to a high prognosis
accuracy. We refer to this approach as Slow Change Assumption
(SCA). Evaluations showed that this assumption turned out to
be wrong because even small changes in traffic can trigger a
completely different behavior of the traffic light controller. The
reason for that is that one detector triggered differently can
cause a entirely changed control sequence.

After that we started a new approach using statical analysis
of the traffic light behavior. By storing the controller inputs
and outputs we were able to analyze how the traffic light reacts
to different inputs and thereby derive transition probabilities.
While we observed that this approach increased the prognosis
quality significantly, we encountered problems when traffic
was changing quickly or traffic volume was atypically high or
low, e.g., in rush hours. This was caused by the fact that our
statistical analysis did not differentiate between different times
of day or different types of days. To circumvent this problem
we collect empirical data for different time slots and days, as
introduced by Dittrich et al. [9].

For this, we used 11 different day classes:

• Monday, regular
• Monday, vacation
• Tuesday - Thursday, reg.
• Tuesday - Thursday, vac.
• Friday, regular
• Friday, vacation

• Saturday, regular
• Saturday, vacation
• Sunday, regular
• Sunday, vacation
• Holiday

Additionally, we divide each day into time slots with a length
of 15min. By using this classification we were able to further
improve the accuracy of our prognosis. To assess the benefits
of these slots we simulated our reference traces with all three
approaches resulting in more than 7000 forecasts each.

In Figure 3a the results for slowly changing traffic are shown,
error bars mark the 95% confidence intervals. Predictions with
a lead time of more than 30 seconds are omitted because they
are likely to be inaccurate and have a low confidence value
attached to them as we will discuss later. Additionally, long-
term forecasts do not introduce benefits in terms of traffic
efficiency. For example, assume a vehicle 100m away from a
traffic light is informed that the signal will change to green in
30 s. With the GLOSA system being restricted to legal limits, it
cannot give a speed recommendation to the vehicle as it would

Figure 2. Prediction Graph

be below a minimum speed limit vmin. From this it follows,
that a vehicle has to be at least vmin∗ forecast away from the
traffic light. The resulting distances have been shown to be too
high to be beneficial for GLOSA systems [1], leading to our
decision to omit forecasts higher than 30 s.

It can be seen that the SCA approach (solid blue line)
performs poorly compared to the approaches utilizing empiric
data and day classes (green and red lines). On average,
predictions made by SCA are off by 11 s to 12 s when the
transition is longer than 8 s away. This confirms that SCA is
not a suitable prognosis algorithm for GLOSA systems. When
traffic changes slowly, the average benefit gained from the
time slots is marginal (≈ 0.5 s) and both statistical approaches
perform similarly.

To better understand how the concept of time slots and
day classes improve the system, we investigated the different
approaches in fast changing traffic, that is, the beginning of
rush hour. Interestingly, the SCA system performed slightly
better than in consistent traffic, caused by the now denser traffic
and therefore less adaptive traffic light controller. As expected,
the performance of the general empiric approach (green line)
now deteriorates (8 s to 9 s for long-term predictions), while
the time and day aware system remains at the same level of
accuracy. The reason for this is that traffic behaves very similar
every week and the empirical data collected for, e.g., a regular
Monday rush hour, is a very good indication for all rush hours
on regular Mondays. Especially for prognoses with shorter lead
times the mean forecast deviation is noticeably lower.
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Figure 3. Mean Time to Signal Change when Forecast is given

We also observe that all approaches perform particularly
well 7 s and shorter to the signal change. Especially the slotted
approach shows almost no deviation in the last 5 s with a
confidence interval width of less than 0.5 s. This is a direct
result from comparing similar time slots instead of using a
generalized approach that does not distinguish between different
times of day.

To better understand the quality of the prognosis, we compare
over- and underestimations of the given forecasts. Figure 4 can
be read as follows: each forecast value given on the x-axis is
compared to the real time to the transition when the forecast
was made. Therefore, a perfect forecast would result in a 45◦

diagonal. For every system we distinguished between the cases
where the forecast underestimated and overestimated the real
time to the transition and plotted the average values for each
case. Plotting the overall average would be misleading as both
cases would cancel each other out to a certain extent. We
observe, that up to a forecast value of about 10 s the slotted
approach never overestimates the time to the next transition.
This means that a vehicle will never arrive too early at a red
light and therefore can avoid stopping, however, the results
show that the GLOSA system may recommend speeds slower
than actually required. Especially for forecasts longer than
11 s, there is room for improvement as all systems over- and
underestimate the time to the transition. Please note, that it
is not possible to improve the system by simply subtracting
or adding the average error, as at the time of the prediction
the system is not aware whether it over- or underestimates.
The spikes of the SCA approach result from the approach’s
strong tendency to underestimation. If SCA announces a signal

change for the next second and this signal change does then
not take place, it will continue announcing 1 s until the signal
actually changes.

The results clearly show that the slotted approach is the most
promising one, leading to the decision to further investigate its
performance and parametrization even though it requires more
data to be stored and processed.

B. Effect of Sample Size in the Learning Phase

The amount of stored data needed for the system to operate
properly is an important parameter. The time aware approach
uses 11 different day classes and each day is split into time
slots with a length of 15min. A usual traffic light controller
logs its input and output signals with a resolution of one
second, leading to a total of 900 data values per time slot. The
traffic light controller will also inform the back-end only once
a second, limiting the maximum frequency of the prognosis
system to 1Hz. Please note, that this data does not necessarily
need to be stored, as it could be discarded once the transition
probabilities have been computed.

To be less prone to outliers during the sampling phase, it
is desirable to use a high number of observations. However,
increasing the sample size does not necessarily lead to a higher
prognosis accuracy: the more observations are considered, the
further back in time the algorithm looks. Especially for rare
day classes like, e.g., ’Monday vacation’, looking back too far
in time can result in the use of data that does not represent
current traffic conditions for this intersection anymore.

Another important aspect to consider is the time needed to
collect enough sample data as too long ramp up phases would



Figure 4. Mean over- and underestimation of the forecast

hinder the deployment of the GLOSA system. It is therefore
a challenging task to determine the number of observations
used for the transition probability computation to both enable
the prognosis to work accurately for any traffic light in any
city and for this process to be fast enough to ensure a prompt
deployment.

Figure 5 shows the effect of the sample size on the prognosis
accuracy. We computed the transition probabilities based on
different sample sizes and then ran the prognosis using our
reference trace. A sample size of 1 means that this time slot
(e.g, a regular Monday, 8:00am till 8:15am) has been observed
exactly one time and all future prognoses for this time slot
are based on these observations. From this it follows, that a
sample size of 5 for said time slot requires at least 5 weeks.
Again the 95% confidence interval is given by colored error
bars.

In general, the results indicate that a higher number of
samples leads to a better forecast; this benefit decreases for
lead times shorter than 8 s where the general prognosis accuracy
is very high.

While for long-term forecasts the average deviation improve-
ment between 1 observation period (solid blue line) and 3
(brown dashed line) is nearly half a second, increasing the
sample size from 4 (green dot-dash line) to 5 (solid red line)
did only marginally improve the overall accuracy.

We therefore decided to parametrize our approach with a
look back time of 4 comparable time slots which seems to
be a good compromise between prognosis accuracy and the
duration of the initial data collection phase.
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C. Influence of Detectors

As we introduced in [8] it is crucial for the prognosis of
adaptive traffic lights to consider the state of the detectors
connected to the traffic light controller. Their occupation does
not only influence the time of signal change but also which
transition will be triggered next. This feature of adaptive traffic
lights improves the flow of traffic through the intersection
but complicates prognoses for GLOSA systems. Despite the
resulting complexity alongside the requirement for larger
amounts of sample data they have to be accounted for in
any GLOSA system as their effect on the traffic light is too
significant to neglect them [8].

The detectors influence the transitions, that is, a short
program to change the control signals in a safe order. For
example, waiting cars occupying a detector can cause the next
transition to be triggered earlier to open their traffic flow. Cars
passing a detector give an indication that the traffic demand
on that flow is still high and therefore postpone the transition
that would change the signal for this flow to red. Special
detectors, such as for buses, can influence which transition will
be chosen next. Additionally, some detectors (e.g., radio signals
from emergency vehicles) not only influence the next transition
but the whole behavior of the traffic light. The prognosis system
can deal with them quite easily because they are usually present
for a long time and do not occur too often. To consider the
regular detectors for vehicles and pedestrians, however, it is
important to focus on the relevant ones for each transition.

A simple intersection like the example in Figure 1b can
have 12 detectors (not considering signals from buses). To
keep the amount of required sample data at a manageable
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Figure 6. Transition prognosis accuracy with and without the consideration of detectors for a fully adaptive traffic light strongly depending on detector readings.

level, we introduced a simplification that allows us to treat
every detector separately instead of additionally considering all
their combinations [8]. To determine which transitions depends
on which detectors we run a χ2 analysis and mark detectors
with a high correlation as relevant. Note, that this process has
to be done only once per configuration phase and should be
automated to ensure fast deployment in larger cities.

The consideration of detectors introduces another challenge
to GLOSA systems: the need for live data exchange. This
requires a communication link between traffic light and
prognosis system with a latency lower than 1 s.

To illustrate the impact of detectors, assume the traffic light
in Figure 1a is at the state ’D’ where only the open traffic
flow through the intersection is from right to left including
turning. Depending on the occupancy states of the detectors,
in this case for the cars coming from the bottom and from
the right, the next transition could either be 4 or 5. Transition
4 additionally depends on the detector counting the vehicles
coming from the right and turning left, influencing the time
when the transition is started.

A comparison of our prognosis algorithm with and without
the consideration of detectors is shown in Figure 6 in the form
of a box plot: The boxes are drawn from the 25% to the 75%
quartile, the thick line marks the median. The whiskers extend
no further than 1.5 times the inter-quartile range, data points
outside of this range are drawn separately as outliers.

Please note, that these are results for an example transition
that heavily relies on detector readings. It can be clearly seen
that the quality of the prognosis without detectors (Figure 6a)
is considerably lower. Even few seconds before a transition
the forecast is significantly off, showing the traffic light’s
high dependency on detectors. Running the prognosis with
consideration of relevant detectors improves the forecast quality.
There are still deviations as the system is unable to foresee

when and for how long a detector will be triggered. Especially
more than 10 s before a transition the upcoming traffic light
behavior is not always clear demonstrated by the existence of
outliers. Coming closer to the start of the transition almost
all forecasts lie within a 2 s window around the real value
which we deem a very good result for a transition that strongly
depends on the readings from multiple detectors.

D. Overall System Accuracy

To assess the overall system accuracy we used the medium
traffic trace followed by the rush hour trace to evaluate the
prognosis system in different scenarios. In total, we analyzed
more than 10,000 forecasts and measured their accuracy.

Please note, that for the system accuracy we do not use
the time to transition but the time to the signal change as a
reference value. The reason for that is twofold: firstly, not every
transition is relevant to the driver (e.g., if only pedestrians are
influenced) and, more importantly, the only sensation of quality
a driver experiences is how accurate the forecast fits the signal
change.

Figure 7 shows our results: the high accuracy shortly before
the signal change also results from the fact that the prognosis
additionally benefits from transitions of other control signals
first. Amber phases and blocking times provide some easy-to-
predict seconds to the forecast of control signals that follow
later in the transitions program. In the last 10 seconds of the
forecast the deviation is less than 2 s in more than 80% of all
cases, reaching 95% in the last 3 s.

The overall accuracy assessment of our approach using
detectors, day classes and time windows shows a quality good
enough to start a GLOSA system even for fully adaptive traffic
lights.

In ETSI ITS-G5, SPaT messages [6] sent from the traffic
light or a prognosis server allow to attach a confidence value to
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Figure 7. System accuracy

every flow-specific prediction. This information is then handed
to the receiving on-board unit to decide whether or not to
display a speed recommendation. One approach to derive such
a confidence for a forecast is to look at the variance or the inter-
quartile range of the forecast data. This confidence assessment
could be done repeatedly on the fly as the error of each forecast
can be measured in retrospect.

E. Limitations

Figure 5 and Figure 7 show the current limitations of our
approach in terms of forecast accuracy. As the behavior of
an adaptive traffic light depends on the occupation of its
detectors, a prediction of signal changes is a prediction of the
chronological sequence of future detector occupations. Short-
term predictions close to the signal change can be done well
with our approach, predictions with higher lead times can
become inaccurate. Our approach is using empiric information
and live data to identify similar situations and to generate a
forecast. Considering the degrees of freedom within an adaptive
traffic light controller it is probably impossible to give long-
term prognoses with absolute accuracy.

One possible way to significantly reduce the forecast
deviation of long-term prognoses is the prediction of traffic in
a microscopic fashion, that is, the prediction of the mobility of
single vehicles. With such an extension it would be possible to
forecast detector occupations and therefore predict the resulting
reaction of the traffic light. Possible approaches to achieve
such a high level of detail are the utilization of inter-vehicle
communication, that is, vehicles continuously transmitting their
whereabouts to allow the prognosis system to build up some
kind of situational awareness or the use of traffic simulation
tools. These systems would then have to deal with the issue of
computational performance, as predictions have to be calculated
with low latencies right after new live data from the traffic
light becomes available.

A general strategic approach is to accept inaccuracies to a
certain degree (especially for long-term predictions) to allow
for an efficient calculation of forecast values and to enable a
quick real life deployment without overly long learning phases.

V. DISCUSSION ON COMPARABILITY

The diversity and uniqueness of intersections and traffic light
controllers makes a comparison between different prognosis
systems a difficult task. As different approaches perform
differently for each type of traffic light, it is hard to reduce the
quality of a prognosis system to a single number. This is espe-
cially problematic as most of the prognoses systems currently
developed are still in their development phase and implemented
in specific test-beds. We believe that the best way to allow
for comparability between these systems is the introduction
of a benchmark test to investigate their performance under
the same traffic conditions. Such a benchmark needs to fulfill
multiple requirements: As all systems would be compared
using the same traffic lights, they would also have to work
on the same data, that is, historical data to allow all kinds of
statistical analysis and classifications. The structure of this data
and the communication between the traffic light controllers
and prognosis systems should therefore be standardized to
enable easier integration of different approaches. Input data
for the traffic light controller should be fully stored and no
information should be discarded. For example, detectors cannot
only detect whether they are occupied or not but also measure
the velocity and dimensions of a passing vehicle. Removing
this information limits the possibilities to create systems that
take these readings into consideration to create a forecast.

The traffic lights in this benchmark test should represent all
different types of traffic light and also include a worst-case
traffic light that is difficult to predict as it utilizes all degrees of
freedom. Experiences made in this and earlier projects showed
that the complexity of the intersection topology itself has only
a minor influence on the prognosis quality. The challenging
part are the traffic light’s degrees of freedom and the fact that
these can be just as high at a ’normal’ intersection.

Additionally, the traffic lights should also be predicted
in different scenarios. These scenarios should represent the
different challenges of traffic light forecasts. Among others,
these include:

• rare events (e.g., big sport events)



• quick changes of traffic volume
• contradicting detector occupations
• immediate reactions of the controller to detector

occupations
• combined signals (e.g., green turn arrows overruling

red lights for the same traffic flow)
• different amounts and kinds of detectors
• external triggers (e.g., buses, emergency vehicles)
• traffic management commands for dynamic green waves
• fluctuation in latency of traffic light live data
We believe that a unified benchmark test can considerably

improve comparability between different GLOSA systems and
therefore contribute to improving the systems themselves.

VI. CONCLUSION AND FUTURE WORK

Green Light Optimized Speed Advisory (GLOSA) systems
are believed to be one of the pillars of future Intelligent
Transportation Systems as they can help prevent avoidable
stopping at traffic lights and thereby reduce fuel consumption
and CO2 emissions. To reach their maximum potential, GLOSA
systems have to be available for all different types of traffic
lights, including semi and fully adaptive ones. The capability
of adaptive traffic light controllers to change their behavior
with lead times as short as 1 s introduces a major challenge
for prognosis systems.

In our previous work [8] we presented an approach to forecast
adaptive traffic lights by using graph transformation. In this
paper we presented an extensive evaluation to fully understand
its performance under different conditions. We demonstrated
the benefit of several development stages and discussed
parametrization like sample size and detector consideration.

We found that a time-aware system that uses empiric
data from similar time slots to predict future signal changes
outperforms general approaches. Furthermore, our results show
that the consideration of traffic detectors substantially improves
the overall forecast accuracy. From this it follows that traffic
light controllers need to continuously report the detector
readings back to the prognosis system. Our system was shown
to be able to even forecast adaptive traffic lights with a high
enough accuracy to be used in GLOSA system.

We validated our approach by means of simulations and also
in real life test drives in the Travolution test-bed in Ingolstadt,
Germany.

In the future we want to further improve our forecast by also
considering traffic management commands. These are sent by
the operator e.g., to improve the flow of traffic by prioritizing
one stream over another. In this paper we discussed the need
for a unified benchmark to test different prognoses systems.
As such a benchmark does currently not exist, we will focus
on creating one that fulfills all the identified criteria.
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