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Abstract—Electric Vehicles (EVs) play an important role to-
wards a more sustainable transportation system. Sufficient charg-
ing infrastructure is, however, needed in order to accommodate
their power demand and increase EV adoption. In this paper,
we propose a simulation-based approach for charging station
(CS) placement using an agent-based traffic simulation. The
heuristic’s objective is to achieve sufficient network coverage to
keep charging related inconvenience within an acceptable range
while minimising the overall number of CSs. For this purpose,
the algorithm identifies locations at which the charging procedure
seamlessly integrates into the drivers’ itineraries, thus minimising
detours and waiting times. At the same time, the algorithm
attempts to maximise the utilisation of each CS throughout the
day in order to minimise the number of CSs. The methodology
is demonstrated at the example of Singapore. The investigation
shows that the charging demand of 20,000 EVs can be covered
with approximately 2,500 CSs by accepting average detours
no greater than 410 metres and average waiting time below
10 minutes. This number can be further reduced by relaxing
the inconvenience criterion.

I. INTRODUCTION

Electric vehicles (EVs) are considered an important measure
towards mitigating local traffic emissions and reducing the
dependency on fossil fuels [1]. In order to promote the
deployment of EVs, battery range related anxiety needs to be
prevented. While significant research has been conducted in
advancement of battery technology for increasing range and
lowering costs [2], a growing number of recent studies also
point out that an effective and efficient charging infrastructure
is crucial [3], [4]. In the last years, an increasing amount of
research has focused on the charging station (CS) placement
problem which is shown to be NP-hard [5]. Finding an
optimal solution at the scale of an entire city thus requires
heuristic approaches. This problem is further complicated by
the fact that charging times and required energy depend on
a large variety of different factors including traffic patterns
and charging behaviour which are difficult to assess from a
macroscopic perspective.

The CS placement problem faces a trade-off between net-
work coverage and infrastructure costs. Since charging a
battery is generally more time consuming than refuelling an

internal combustion engine vehicle, CSs should be placed at
locations where vehicles are naturally parked long enough to
sufficiently cover their charging needs. Such broad coverage,
however, leads to a large number of CSs which may only be
rarely used. As this is prohibitive from a cost perspective, it
is necessary to identify hotspots where the charging demand
is sufficiently high to justify placing a CS while ensuring that
it is close enough to the drivers’ preferred parking locations.

Recent work has approached the CS placement problem
with different optimisation objectives. Apart from investment
costs, aspects taken into consideration include operation costs,
maintenance, and network loss costs [6], network coverage,
driver convenience [5], as well as energy costs for detours [7].
Time costs for drivers are considered in terms of delays for
charging [8], driving time spent for reaching a CS [9], and
queuing time [10].

Real world data is an important aspect for planning purposes
attempting to identify optimal CS locations. In [11], household
travel survey data is used to identify vehicles for which a fully
charged battery is not sufficient to cover their drivers’ daily
commute and require intermediate charging. This knowledge
is taken into account for charging cost optimisation. Similar
data is also used in [12] to select CS locations minimising
total walking distances from the CS to the driver’s destination.
Finally, charging event data from EV users can be analysed
and the charging behaviours can be modelled according to user
category and vehicle models [13], [14].

This work presents a heuristic using an agent-based traffic
simulation including behavioural aspects with regard to charg-
ing decisions. The simulation framework allows simulating
the traffic of an entire city as well as a variety of vehicle
parameters such as energy consumption or the battery’s state-
of-charge (SOC) [15]. By further including charging behaviour
models and CS distributions, the emergence of charging pat-
terns can be investigated. This allows identifying CS locations
which satisfy charging needs under various convenience con-
straints while minimising the number of required CSs. Benefits
offered by this high resolution simulation-based approach are
demonstrated in [16]–[18].



The remainder of the paper is organised as follows: Sec-
tion II introduces the charging behaviour model and the CS
placement algorithm. In Section III the proposed methodology
is applied to the case of Singapore. Section IV discusses the
results and an outlook on future work is given in Section V.

II. METHODOLOGY

The main components of the proposed methodology are a
charging behaviour model and a CS placement algorithm. The
first one determines under what conditions a driver decides to
recharge the vehicle’s battery, the latter aims for placing CSs
in a way which best suits the drivers’ charging needs.

A. Charging Behaviour Model

The charging behaviour model is based on our previously
published work in [19]. In the current paper, we additionally
distinguish between two aspects of charging which are i)
mandatory charging and ii) convenience charging. Mandatory
charging is invoked if an energy consumption estimate reveals
that a planned trip cannot be completed with the current SOC.
In contrast, convenience charging already takes place while the
battery’s SOC is still sufficiently high but a CS can be reached
without a considerable detour. The authors in [20] suggest that
users have different tendencies to charge when coping with
limited battery capacity for mobility purposes. Some users
might favour to take every charging opportunity while others
only charge when the need arises. We introduce a convenience
criterion that allows the agents to choose an appropriate CS
depending on their remaining SOC and distance to the CS as
in Equation (3).

Mandatory charging applies the concept of a range safety
margin as in [20], where the authors define a comfortable
range as the lowest remaining battery SOC which is not
allowed to fall below. This range safety margin is reserved to
buffer variations of energy consumption. The authors in [20]
also show that whenever users interact with limited energy
resources, they continuously monitor and manage the relation
between their mobility needs (e.g. distance of next trip) and
their mobility resources (e.g. remaining range). It considers
the length of the next trip and estimates the resulting energy
consumption which is compared to the remaining energy in
the battery. The total estimated energy consumption EPQ on
a route from P to Q consists of the expected specific energy
consumption λ, given in kWh / km, and distance dPQ of the
next trip so that

EPQ = λ · dPQ (1)

The mandatory charging model can be formalized in the
way that for a trip starting from location P to destination Q
charging is invoked at or near a location if

SOC <
EPQ

C
+β (2)

Here, C denotes the battery capacity and β a safety margin
parameter. In this case, the agent seeks the nearest CS from
location P . Assuming non-myopic agents, the decision for
charging at or near P is already made at the end of a trip

preceding P so that the entire stop duration at P is available
for charging. Depending on the charging event start time
tstartCharge and charging duration tdurationCharge, the trip start time
tstartTrip at P may be delayed until Condition 2 does not apply
anymore. If the time period from tstartCharge until tstartTrip is
sufficient to increase the SOC such that Condition 2 does not
apply anymore, then the charging event ends at a predefined
SOCstop or at tstartTrip whichever is reached first.

The convenience charging accounts for the fact that agents
will tend to charge when reaching a certain SOC level in any
case, given a CS can be conveniently reached. Charging is
therefore initiated at a CS P ′ near location P if

dPP’ · (SOC · C)a < γ (3)

Including the distance dPP’ accounts for the fact that an
agent is more likely to accept a higher inconvenience if the
SOC is lower and vice versa. The exponent a allows taking
into account a possible non-linearity in the trade-off between
distance and SOC. In contrast to mandatory charging, the trip
start time tstartTrip is never delayed in the case of convenience
charging. The charging event ends at a predefined SOCstop or
until tstartTrip whichever comes first.

The charging behaviour model including mandatory and
convenience charging is summarised in Algorithm 1. When an
agent arrives at a location, the agent checks if the remaining
SOC is sufficient to provide the energy required for the next
trip plus a safety margin for mandatory charging. Should Con-
dition (2) not apply anymore, the agent charges at the nearest
CS and postpones the scheduled trip if necessary. Otherwise,
the agent decides for convenience charging depending on the
remaining SOC and the distance to the nearest CS. Should
the agent decide for convenience charging, then the trip start
schedule has priority over the charging need.

Algorithm 1: Charging Behaviour Model.
For each agent at each trip end
if SOC < EPQ/C + β then

charge at nearest CS P ′

if tstartCharge + tdurationCharge > tstartTrip then
postpone trip start time until SOC > EPQ/C + β

else
charge until SOCstop or tstartTrip whichever first
start trip as scheduled

end
else

if dPP‘ · (SOC · C)a < γ then
charge at CS P ′ if available
charge until SOCstop or tstartTrip whichever first
start trip as scheduled

else
stay at P until scheduled trip start time

end
end



B. Charging Station Placement

Our CS placement approach uses an iterative approach in
which each iteration simulates a predefined time period T
of traffic for the area of interest, e.g., a whole day for an
entire city. Initially, CSs are located at each available parking
location. In every iteration, CSs are then subsequently removed
according to the rules described in this section. The simu-
lation is initialised with an origin-destination (O-D) matrix,
an SOCinit distribution. A first simulation run then reveals
a tempo-spatial pattern of charging demand which would
result from the specific charging behaviour as described in
Section II-A. Subsequently, the infrastructure is consolidated
by clustering CSs in the same area which have complementary
temporal usage patterns. This results in a reduced number
of CSs with higher utilisation rates. In a next iteration, the
system is simulated using the new CS distribution. The sparser
network coverage will cause agents to adapt to the new
conditions with some taking a small detour to recharge their
batteries and others to delay their charging to the next stop,
resulting in a variation of the charging pattern. This procedure
is repeated by incrementally removing low-utilised CSs as long
as the agents’ total energy demand can be satisfied without
violating the convenience criterion of acceptable detours.

An overview is illustrated in Algorithm 2. In detail, this
algorithm operates as follows. For each CS i, a function
ϑi(t) ∈ {0, 1, 2, ...} describes the occupancy of the CS at
time t. For example, a value of ϑi(t = 8) = 2 means
that a lot is occupied by one vehicle which is charging plus
another one waiting in the queue at 8 o’clock . The algorithm
performs a pairwise comparison of these functions for any
combination of CSs i and j of which the distance dij ≤ δ.
The parameter δ is a threshold determining how large the
distance between two, possibly combinable CSs may be. The
pairwise comparison computes an overlap indicator σ̃ij which
determines the degree to which two CSs exhibit conflicting
occupancies. It is computed according to

σ̃ij =

∫ T

0

ϑi(t) · ϑj(t)dt (4)

with T as the time period for one simulation iteration. σ̃ij thus
equals 0 if no overlap exists and T if both lots are occupied by
one vehicle each throughout the entire day. In case additional
vehicles are queuing at one of the lots, it may also assume
values greater than T . Two lots may be combined if this
overlap is sufficiently small while a large overlap indicates
that both CSs are often needed at the same time. Apart from
the temporal overlap, the decision whether to cluster two CSs
further depends on their distance dij meaning that neighbouring
lots should have a higher chance of being combined than those
which are farther apart. This results in the definition of the
weighted overlap-distance indicator σij that includes

σij = α ·
σ̃ij

T
+ (1− α) ·

dij

d0
(5)

with the weight α ∈ [0, 1] and the characteristic distance d0.
Two CSs can be combined if they fulfil the condition

σij < θ (6)

with the threshold θ. Depending on the weight assigned to
the overlap and the distance, α and d0 need to be adapted
accordingly.

Algorithmically, the consolidation process is performed in
the following way. Initially, for all possible pairs of lots σij
is computed. The pairwise computation can be limited to lots
with a distance dij ≤ δ with

δ = θ · d0 · (1− α)−1 α 6= 1 (7)

since all other combinations are invalid due to Condition (6).
The two lots with the smallest σ are then removed if Condi-
tion (6) is fulfilled. They are replaced by a new CS. Adopting
the definition of the centre of mass, the new lot’s position is
located at the removed pair’s load centre

~R =
1

E
(~ri · Ei + ~rj · Ej) (8)

E = E + Ej denotes the total daily energy supply of both
lots E =

∫ T

0
(pi(t) + pj(t)) dt. As there is not necessarily a

parking lot at the exact position ~R, the parking lot closest to
this position is chosen.

The entire consolidation procedure is repeated by choosing
pairs with the next smallest σ value for consolidation until
either a predefined share r of the initial CSs has been removed
or until no further consolidation is possible without violating
Condition (6).

Subsequently, the resulting CS network is used as an input
parameter for the next iteration. As agents will adapt to
the new charging infrastructure distribution as a result of
the described charging behaviour in II-A, the new emerging
tempo-spatial charging demand distribution will be different
from the initial one. This simulation-consolidation process
is repeated until no further consolidation is possible without
violating the consolidation criteria.

Algorithm 2: Charging Station Consolidation.

while ∃σij < θ with distinct i, j ∈ {1, . . . , ncs} do
forall the dij ≤ δ with distinct i, j ∈ {1, . . . , ncs} do

compute σij
append σij to list σ

end
while min(σ) < θ do

get CS pair i and j with min(σ)
remove CS i and j
add new CS closest to ~R
remove σij from list σ

end
end



III. CASE STUDY

As an illustration of the functionality of the proposed
methodology, the framework is applied to input data from
Singapore. For the case study, the City Mobility Simula-
tor (CityMoS), formerly known as SEMSim [15] is used.
CityMoS is an agent-based traffic simulation. Agents in City-
MoS consist of driver-vehicle unit (DVU) which contain both
driver behaviour and vehicle models. The driver component
includes acceleration and lane changing behaviour through
car-following and lane-changing models [21], as well as
charging behaviour models which determine a driver’s decision
to recharge the vehicle’s battery [19]. The vehicle models
allow simulating components such as engine, auxiliary power
consumers, as well as the battery. This provides detailed
information on power consumption at any point in time. Traffic
is generated by creating an itinerary for each agent in a given
road network. An itinerary may consist of multiple trips, each
of which is characterised by an O-D tuple specifying starting
time and location as well as the agent’s destination. Based on
this O-D matrix, routes are then calculated using Dijkstra’s
algorithm. Each agent is further assigned an initial SOC value.

A. Input Data

In this case study, we utilise the Singapore road network
derived from Navteq data from the year 2009 which provides
information regarding the number of lanes on roads as well as
their coordinates and lengths. The Household Interview Travel
Survey (HITS) data from the year 2012 is used to initialise the
traffic demand by assigning each agent an itinerary extrapo-
lated from this dataset. The dataset consists of information
on daily commuters containing O-D pairs and journey time
information for a typical working day in Singapore. A seed can
be specified at the beginning of the simulation that influences
the extrapolated traffic demand generation. Each iteration in
the CS consolidation process is assigned with a different seed
in order to avoid the exact same traffic demand that causes an
overfitting of the CS distribution.

We simulate 54 h for each simulation instance in total and
each agent starts with full initial SOC. The first 24 h are used
as a warm-up period to derive an initial SOC distribution for
the second day, in which the CS utilisation is accounted for
the consolidation. The last 6 h are a cool down phase, such
that the agents can finish their trip or charging event after the
end of the second day. In Singapore, each building is assigned
a unique postal code. For the first simulation iteration, each
of 131, 549 available postal codes is assigned 10 CSs.

B. Scenarios

Different scenarios are investigated by varying the CS con-
solidation parameters α and θ. The consolidation is influenced
by the temporal overlap and spacial distance between the
CSs. We determine α and θ according to the maximum
allowable overlap σ̃max when the distance is zero and the
maximum allowable distance dPP’max when the overlap is zero.
With Equation (5) and the characteristic distance d0 set to

TABLE I: Consolidation Parameters.

dPP’max [m] σ̃max [h] =¿ α θ

250 2 0.75 0.063
4 0.6 0.1
6 0.5 0.125

500 2 0.857 0.071
4 0.75 0.125
6 0.667 0.167

750 2 0.9 0.075
4 0.818 0.136
6 0.75 0.188

TABLE II: Simulation Parameters.

Parameter Description Value Unit

nagents number of agents 20, 000 #
C battery capacity 20 kWh
PCharge charging power 19.2 kW

1, 000metres, we derive values for α and θ from different lev-
els of the maximum allowable distance and overlap at 250m,
500m, and 750m as well as 2 h, 4 h, and 6 h, respectively, as
shown in Table I.

Other parameters are assumed to be constant. Values of
parameters related to the simulation can be found in Table II.
The 20, 000 agents are the total number of agents in the
simulation distributed over the simulation period. The actual
number of agents on the street at the same time is therefore less
than this number. Each agent has a maximum battery capacity
of 20 kWh. This value represents a realistic battery capacity
of the affordable EVs ranging from 16 kWh of the i-MiEV
to 24 kWh of the Nissan Leaf. The charging power of the
charging infrastructure is assumed to be 19.2 kW with level 2
AC chargers.

Table III lists the parameters described in Section II-A. The
parameter λ is the specific energy consumption which is used
for the energy estimation of the next trip by the agent. The
actual energy consumption is determined by the acceleration
model under the respective traffic conditions. Charging is
assumed to be conducted at constant power.

C. Results

This section shows the results from applying the CS place-
ment algorithm to the case of Singapore.

1) Sustainable Scenarios with Regard to Energy Consump-
tion: The SOC distribution at the simulation end is gener-
ally different from the beginning of the simulation. This is
illustrated in Figure 1 which shows the distribution of the

TABLE III: Charging Behaviour Parameters.

Parameter Description Value Unit

λ specific energy consumption 0.2 kWh / km
β safety margin 20 %
SOCstop SOC to stop charging 100 %
a non-linearity factor 1
γ convenience threshold 16 kWh · km



Fig. 1: Histogram of energy balance. The energy balance is
the difference between the charged and consumed energy of
all agents in one scenario in Wh per agent.

Fig. 2: Number of CSs over iteration for different consolida-
tion parameters dPP’max and σ̃max.

difference between the charged and consumed energy of the
second simulation day in each scenario. In this case, a negative
value indicates that more energy is consumed than charged. All
of the scenarios are, however, negatively balanced in terms of
energy consumption and charging.

2) Number of Charging Stations : With each iteration, CSs
are removed according to the algorithm described in Section II.
The largest decrease in the number of CSs occurs at the first
iteration as shown in Figure 2. In this case study, the result
suggests that the maximum allowable distance dPP’max has a
larger influence on the number of CSs than the maximum
allowable overlap σ̃max.

3) Influence of Consolidation Parameter dPP’max and σ̃max:
The maximum allowable distance dPP’max and the maximum
allowable overlap σ̃max are important parameters in the CS
consolidation algorithm that affects the final number and
distribution of CSs. Figure 3 shows the number of CSs, detour,
and waiting time over different dPP’max and σ̃max values in the
last iteration.

The number of CSs is clearly affected by the dPP’max
value with larger dPP’max allowing more distant CSs to be
consolidated. The σ̃max also influences the number of CSs as
longer σ̃max increases the chance of CSs to be combined. The
difference between 4 h and 6 h, however, is small indicating
that only little CSs overlap more than 4 h in usage.

When the agent decides to charge, it needs to deviate from
the original route to reach the desired CS. The extra distance
is the detour the agent has to take. The detour increases with
larger dPP’max and σ̃max due to the reduction in number of CSs.

Each CS location has a specified number of CSs. If all
lots are occupied, an agent has to queue at the CS until
a lot becomes available. The waiting time is averaged over
those agents that recorded a charging event. The waiting
time increases with larger dPP’max and σ̃max due to less CSs
remaining. The result suggests that the effect of σ̃max is larger
with increasing dPP’max.

Figure 3 illustrates the relationship between the required
number of CSs and the inconvenience to satisfy the charging
demand of 20, 000 EVs. Under the investigated conditions,
results show that the charging demand can be covered with
2, 445 CSs by accepting average detours of 410 metres and an
average waiting time of 9 minutes. This number can further be
reduced to 603 CSs at the cost of 198 metres longer average
detours and 56 minutes longer average waiting time.

The results also suggest that σ̃max might not be a good
parameter to reduce the number of CSs as the increase in
waiting time at high dPP’max level is significant compared to
the reduction in CSs.

4) Charging Station Distribution: The CS distribution at
the last iteration of the proposed algorithm is illustrated in
Figure 4. It shows the CS distribution scenario with different
dPP’max values. Figure 4 clearly shows that a higher value of
dPP’max results in a lower density of CSs and vice versa. The
scenario with 250m dPP’max presents a much higher density
than the other two scenarios as seen in Figure 3

IV. DISCUSSION

According to the presented outcome, a CS can serve be-
tween approximately 8 and 33 EVs under the given inconve-
nience criteria. While the results indicate that the algorithm
converges to a reasonable outcome in terms of network cov-
erage and temporal CS utilisation, a few aspects have to be
considered which may limit the practical applicability of the
quantitative results which are elaborated in the following.

The quality of the simulation results highly depends on the
simulation input data. The mobility demand represents such a
critical input. Although the travel survey data is collected from
tens of thousands of households, it still only reflects around
one percent of the Singapore population. The mobility demand
generated from the travel survey data might be biased towards
certain areas and periods of time and thus cause different
inconvenience values.

Currently, the model does not implement any waiting be-
haviour as agents simply queue until a CS becomes available.
In the real world, this will not be entirely true since, depending
on the expected waiting time and the distance to the next
CS, agents may choose alternative charging locations. More
sophisticated navigation and recommendation systems may
therefore lead to a more even distribution of CS utilisation
and further minimisation of detours and waiting times, thus
further reducing the number of required CSs.



(a) (b) (c)

Fig. 3: (a) Number of CSs, (b) detour, and (c) waiting time for different dPP’max and σ̃max scenarios.

(a) (b) (c)

Fig. 4: CS distribution with (a) 250m, (b) 500m, (c) 750m dPP’max and 2 h σ̃max at the last iteration.

The ratio between charging time and connection time at
a CS is assumed to be one in our study. That means the
EV user immediately frees the CS when the charging process
ends. Data analysis in [22], however, shows that the connection
time can be much longer than the actual charging time. This
behaviour blocks resources which could lead to less CSs being
consolidated. The longer connection to charging time ratio
can be utilised to test more intelligent distribution of the
charging demand from the charging infrastructure perspective
with load shifting. The study in [23] reveals that EV users
prefer to charge at home in the evening at peak demand times.
Considering the load profile of a city, the price sensitivity
of the user can be an important factor to shift the charging
demand tempo-spatially by providing incentives to EV users.

In the considered case, the energy balance turns out to be
slightly negative which means more energy is consumed than
charged. This leads to a small underestimation of the number
of required CSs. This is a drawback of a warm-up period of
one day only for deriving an initial SOC distribution. The
majority of the negative energy balance is, however, less than
10% of the battery capacity. At the considered connection
power, this amount of energy requires only several minutes
of charging time so that this influence on the CS consolida-
tion is small. Given limited computing resources, the slight
underestimation of energy demand is therefore neglected.

The number of required CSs depends on the number of EVs
and at the same time on the CS occupancy duration which

is determined by the charging power. These aspects depend
on political, economic, and technical framework conditions
including EV market penetration targets, CS costs, and the
capacity of the power network to accommodate additional
loads. For optimising charging infrastructures not only with
regard to the transportation system but also with respect to
the power network, the implementation of CityMoS traffic
simulation coupled with CityMoS power system simulation
as decribed in [24]. A study serving for planning purposes
would therefore need to take these factors into account in a
more differentiated way.

In the present study, inconvenience parameters have been set
to intuitively reasonable values. These values might, however,
turn out to be different in real-world behaviour. The parameters
need to be calibrated by conducting user studies.

While the case study results show the effectiveness of the
presented approach, the quantitative results derived from the
simulation study cannot be directly translated into infrastruc-
ture planning decisions. In this regard, more sophisticated
assumptions regarding waiting behaviour, charge connection
power, and traffic data need to be made to obtain a sufficiently
accurate representation of real-world conditions. Building on
these more realistic assumptions, it is believed that the pre-
sented framework could serve as an effective decision support
system to explore a large variety of different infrastructure
scenarios and to help infrastructure developers in making
appropriate planning decisions.



V. CONCLUSION AND OUTLOOK

In this paper, we presented a simulation-based heuristic
for optimal placement of EV CSs and demonstrated its ef-
fectiveness on the example of Singapore. In particular, we
applied an agent-based traffic simulation together with a CS
consolidation algorithm to identify optimal CS locations. The
heuristic’s objective is to achieve sufficient network coverage
to keep charging related inconvenience within an acceptable
range while minimising the overall number and thereby the
costs of CSs.

Under the investigated conditions, results show that the
charging demand of 20, 000 EVs can be covered with approxi-
mately 2, 500 CSs by accepting average detours no greater than
410 metres and average waiting time below 10 minutes. This
number can be further reduced by relaxing the inconvenience
criterion. The results of the case study show that the algorithm
converges towards a CS distribution which effectively satisfies
charging demand under the given inconvenience constraints.

In accordance with the limitations discussed in Section IV,
future work will comprise simulations considering longer
warm-up periods as well as more detailed sensitivity consider-
ations with regard to different charging powers and EV num-
bers as well as empirically derived inconvenience acceptance
parameters. Our CS consolidation algorithm represents a top-
down approach where we remove CSs from an dense initial
distribution. It remains to be seen how a bottom-up approach
performs in which CSs are iteratively added to the network.
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