
Autonomous Vehicles as Local Tra�c Optimizers

Ashna Bhatia1, Jordan Ivanchev1,2, David Eckho�1,2, and Alois Knoll2,3

1 TUMCREATE, 1 Create Way 138602, Singapore
{firstname}.{lastname}@tum-create.edu.sg

2 Technical University of Munich, 3 Boltzmannstr., 85747 Munich, Germany
knoll@in.tum.de

3 Nanyang Technological University, 50 Nanyang Ave, 639798, Singapore

Abstract. This paper explores the interaction between autonomous and
human-driven cars on a microscopic level using an agent-based tra�c
simulator. More speci�cally, the paper deals with the design of driving
logic models of �socially-aware� autonomous vehicles that can improve
the performance of all vehicles on the road. Congestion waves, which are
created as a result of an abrupt stopping or a car joining a highway, are a
known phenomenon in current tra�c systems. Experiments performed,
demonstrate how the presence of intelligent social vehicles on the road
can reduce such e�ects by acting as a �exible medium between human-
driven cars. Metrics to evaluate bene�ts ot our AV behaviour models
under various states of tra�c conditions/congestion are also proposed.
Finally, results showing the e�ectiveness of these models are presented.

Keywords: Autonomous vehicles ·Mixed tra�c agent-based simulation
· Driver Models.

1 INTRODUCTION

The current trends of Intelligent Transport Systems(ITS) and their applications
concerning intelligent cars include advancements in Adaptive Cruise Control
(ACC), Obstacle Warning, Avoidance Mechanism, Lane Detection and Collision
Noti�cation, which all contribute towards making travel more comfortable and
safe [1]. In [2] it is reiterated that sustainable ITS application will enable the
reduction in carbon dioxide emission as tra�c volume is reduced and managed.
Research and development in the sector of Autonomous Vehicles (AVs) is being
done worldwide. Bene�ts from them, such as more independent mobility for af-
�uent non-drivers, may begin sooner rather than later. However, most impacts
concerning improvements in safety, sustainability and comfort will only be sig-
ni�cant when AVs become common and a�ordable, which might take another 20
to 30 years [3].

Consequential to these technologies, expectations and predicted trends, copi-
ous evaluations have been made on the impact of penetrating AVs into the road
transport sector. The research done in [4] shows how vehicle-to-vehicle commu-
nication, can make a di�erence in factors such as fuel consumption, driver safety
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and convenience. A mixed simulation scenario with 3 types of car models; man-
ual, ACC, and Cooperative Adaptive Cruise Control (CACC) is analysed in [5].
The experiments carried out here, analyse optimal platoon sizes feasible due to
the presence of CACC, that enhance the tra�c �ow.

Promising improvements using V2I communications can be seen in the work
done on Variable Speed Limits in [6] wherein a control algorithm is presented,
which simultaneously maximizes the mobility, safety and environmental impact
by �nding a balanced trade-o�. Another multi-objective approach considering
e�ciency, comfort, throughput, and safety is presented in [7] where a very sim-
plistic mixed tra�c scenario is considered and optimal parametrizations of known
car-following models are found.

An alternative approach to maximizing the bene�ts of autonomous mobility
is to separate the AVs from the rest of the tra�c. A macroscopic evaluation
of a dedicated AV lane policy on all highways for the city of Singapore has
been presented in [8]. Additionally, a microscopic analysis of replacing High
Occupancy Vehicle lanes with dedicated AV lanes has been performed in [9].
Those studies, however, model expected AV behaviour rather than trying to
design its logic so that it bene�ts tra�c conditions, which is the focus of our
work.

One thing that is clear is that, mixed tra�c scenarios will be impossible to
avoid with the onset of AV acceptance. Various questions arise in this scenario; 1)
how should the AV behave in order to optimize the impact of its presence? 2) To
what extent will the behaviour impact the surrounding human-driven vehicles?
3) What tra�c parameters can it improve (safety, comfort, throughput)? 4)
How safe is the interaction between human controlled and automated vehicles?
5) Will additional information regarding surrounding vehicles in an autonomous
vehicles' neighbourhood, help in improving tra�c conditions (as opposed to only
considering the vehicles in front and behind)?

In order to begin addressing those questions in an e�cient and safe manner,
we suggest to use a modeling and simulation approach. We use a multi-agent
tra�c simulation environment for designing and testing the control logic of AV
driver models that aim to improve tra�c conditions for all tra�c participants
in terms of safety, fuel consumption and throughput. This allows us to fully
determine and control the tra�c environment, and to run all di�erent scenarios
we need, in order to �nd bene�cial autonomous vehicle control parameters.

The contributions of this paper can be summarized as follows:

� Design of socially aware autonomous vehicle behaviour models

� Design of metrics to evaluate the performance of these models in terms of
e�ciency, safety, and tra�c robustness

� Analysis of agent population subgroup behaviour and performance to un-
derstand the mechanism behind the improvement of tra�c conditions
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2 Simulation Framework

Since mixed tra�c conditions do not currently exist in the real world, using simu-
lation seems as a viable approach to study mixed tra�c. For the purposes of this
research we have chosen the CityMoS simulation framework [10], which is micro-
scopic and agent-based in nature. The behaviour of these agents (vehicles) is pro-
grammed using driver models which are introduced in the subsequent subsection.
More speci�cally, we use the BEHAVE (Behaviour Evaluation of Human-driven
and Autonomous VEhicles) tool [11], powered by the discrete-time based City-
MoS engine, which is designed speci�cally for studying the interactions between
AVs and human-driven vehicles.

Driver Models Various car-following and lane-changing driver models have
already been proposed in order to mimic the behavior and dynamics of vehicles
on the road in a simulation environment. Few of the well-known ones are the
Gipps' Model [12], the Intelligent Driver Model(IDM) [13], the MOBIL Lane
Changing Model [14], etc.

Driver models like IDM take as inputs, information about the vehicle in front
and compute the forward acceleration, which will be applied. The models are
parametrized by the personal preferences of the driver such as: time-headway,
acceleration and deceleration components, minimum safety distance gaps etc.
These parameters can be calibrated in order to closely match a given real-world
data set.

The aspects of driving that make AVs di�erent from humans that have been
assumed in this work include almost no reaction time and perfect perception
which actually is a fair description of the IDM. For this reason, we use it to model
naive non-social AVs, and benchmark their performance against more elaborate
models that we design later in the paper. In order to study the vehicle inter-
actions in mixed-tra�c conditions (human-driven and autonomous vehicles), an
adequate model that represents human-driven vehicles should be identi�ed as
well. We use the Human Driver Model (HDM) [15], which is an extension of the
work carried out for the IDM.

The IDM stands in the core of all model design in this work since it: 1)
is the benchmarking model we use for non-social AVs, 2) is the model which
is extended to yield the human driver model (HDM), and 3) is the model we
extend to build our social autonomous vehicle models. It is a well established
car-following model that is simplistic and realistic in terms of formulation and
simulation, respectively. The acceleration (Equation1) of a vehicle α at a given
time t is calculated using the continuous acceleration function v̇α(sα, vα, ∆vα)
depending on the vehicle's actual velocity vα(t), the net distance sα and the
approaching speed ∆vα(t).

v̇α = a

[
1−

(
vα
v0

)δ
−
(
s∗(vα, ∆vα)

sα

)2
]

(1)

with
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s∗(vα, ∆vα) = s0 + vαT +
vα∆vα

2
√
ab

(2)

where s0corresponds to the desired minimum distance gap to the preceding
vehicle, T to the time gap to safely come to a halt without crashing into the
vehicle in front, and b to the vehicle's comfortable deceleration. Here, v0 corre-
sponds to the vehicles desired velocity, a corresponds to the vehicles maximum
acceleration , and δ determines how the acceleration decreases once the desired
velocity i.e v0, is reached.

To incorporate more realistic behaviour into the IDM, it was extended to
derive the Human Driver Model (HDM) in [15] . Human-like behaviour is in-
tegrated by taking into consideration the following destabilizing and stabilizing
factors.

1. Finite reaction time : Human drivers have a certain �nite reaction time T ′ to
events occurring on the road. By computing the acceleration at time t− T ′
instead of at time t, an e�ect equivalent to delayed response to stimuli on
the road can be achieved.

2. Estimation errors : As shown in equation 1 acceleration is a function of the
distance to the preceding vehicle s and the approach speed ∆v. Those inputs
to the model typically are the perfect measurements provided by the simula-
tor, however, as a human driver is is certainly plausible that some perception
errors will be introduced. The HDM models this, using stochastic noise in-
troduced by a Weiner process that leads to time-correlated �uctuations of
the acceleration.

3. Temporal anticipation : Human drivers can be intuitive enough to anticipate
their reaction time and the evolution of tra�c within small time windows.
To represent this awareness, of future net distance and future velocity, HDM
uses constant acceleration and velocity projections to determine their current
values, respectively.

4. Spatial anticipation : The receptivity range of the human driver can be ex-
tended to more than one preceding vehicle on accord of spatial perceptive-
ness. The IDM considers relative measures to only one vehicle ahead, as can
be seen in its deceleration determining component. The HDM expands the
interaction term by taking into account multiple nearest preceding vehicles.

The �rst two factors are responsible for destabilizing the tra�c conditions
and the last two being anticipatory in nature, contribute towards the stability.
In our studies we use parameter values speci�ed by the authors of the HDM
for all additional parameters introduced in the model which achieve a balance
between the 4 additional aspects of the model.

3 Social AV Models

One of the reasons IDM is widely used is because it has succeeded in showing
robustness and aptness by qualitatively reproducing results from empirical data
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in simulation environments. This was achieved through varying mostly one pa-
rameter that the model is quite sensitive to, namely, the time-headway [13], or
the distance, in terms of time, that an agent considers to be safe. Hence, in our
models, which are based on IDM, we modulate this parameter as well to steer
the behaviour of our agents. Consequently, the goal is to formulate models that
control AVs and improve on the following measures:

1. Performance : in terms of total tra�c capacity and average fuel consumption
2. Safety : in terms of accidents caused in the tra�c scenario.
3. Resilience : in terms of response and recovery from perturbations that cause

congestion waves.

Modeling the �rst Social AV model - SAV By exploring the interaction
between mixed (IDM and HDM) agent populations using BEHAVE, the e�ect
of the time-headway parameter was analysed in details. It was observed that
as the time-headway value was increased, the overall tra�c conditions became
more stable and safe. This comes at the cost of reduced throughput and overall
average velocity.

The central idea behind the �rst design of a social AV model is to provide
information about more vehicles in its vicinity. Adhering to the single-lane car-
following set-up, the idea is to incorporate in an AVs decision making logic,
information about not just the preceding vehicle (as the IDM does), but also
of the following one. The hypothesis being; an AV that is aware of the distance
to its following and preceding vehicles, can make decisions regarding its own
dynamics which can bene�t the entire tra�c situation.

The intended behaviour of this AV is designed such that, the AV adjusts
its own time-headway parameter value so that it is equidistant from the vehicle
ahead and the vehicle behind. The maximum and minimum permissible value of
the time-headway is set to be 2.5 seconds and 0.5 seconds, respectively.

The AV is spatially aware and knows the position of the vehicle in front(xi−1)
and the vehicle behind(xi+1), along with its own position(xi). The modulation
factor µ as shown in equation 3 is the di�erence of the current position of the
vehicle from the midpoint of the leading and following vehicles. The vehicle in
front has a greater position than the vehicle behind. These positions are relative
to the coordinates of a highway beginning at position 0.

µ = xi −

(
xi−1 + xi+1

2

)
(3)

If the AV is closer to the vehicle ahead, µ will be positive and vice versa.
Taking the logistic sigmoid of this metric,(equation 4) and bounding it in the
range of the set limit values for the time-headway, results in a greater value for
T as the AV gets closer to the vehicle ahead. This means it will now aim at
increasing the distance ahead by increasing its time-headway proportionally, as
per the following equation.
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T = (Tmax − Tmin) ∗ S(µ) + Tmin (4)

With this underlying model logic, the AV continuously modulates its own time-
headway based on its di�erence from the midpoint and the general equation of
the IDM (Equation 1). It always aims to be in the centre of its remote neigh-
bourhood to reduce the overall deviation in spacing between vehicles. From this
point forward, the model obeying this design will be referred to as the SAV i.e
Social Autonomous Vehicle.

Extending the SAV - SAVE Given the advancements in V2V and V2I com-
munications, it is plausible that an AV is capable of having more information
regarding its neighborhood, than what is provided to the SAV. Thus, in our
second approach, the Social Autonomous Vehicle- Extended(SAVE) model, in-
corporates additional information regarding the tra�c dynamics by expanding
the neighbourhood awareness of the AV with a congestion predictive control
parameter.

Similar to the logic of the SAV model, the SAVE model aims to achieve
improvement of throughput, safety and tra�c resilience by modulating the time-
headway parameter. Instead of relying solely on the relative positions, this AV
model was intended to understand the tra�c dynamics better, for which it uses a
congestion predictive control parameter called time-to-next(TTN). These values
facilitate a prediction into the remote future by stating the time it will take for
a vehicle to reach or catch-up with the next vehicle, given its current speed and
the current distance to the vehicle ahead, as shown in this equation:

TTN =
sαβ
vα

(5)

The AV is provided with two proximity-based sorted lists containing this
TTN information, for the vehicles ahead and behind, respectively. The length
N of each list denotes the size of the neighbourhood under consideration.

Before responding intelligently, an AV needs to evaluate which tra�c condi-
tion it is currently in: entering a congestion wave, or exiting it. One way to do
that is by using weighted means of TTN values calculated from the two sorted
lists. They give a look-ahead and look-back in tra�c distribution, while giving
greater priority to closer vehicles.

W1 represents the relative weighted proximity(in terms of TTN values) to the
clusters. It is set according to the di�erence between two exponentially weighted
means(one concerning the cluster of vehicles ahead, and the other concerning
the cluster behind), as can be seen in Equation 6. A positive value of W1 means
that the cluster ahead,as a whole is closer to the vehicle in question, as compared
to the cluster of vehicles behind it.

W1 =

N∑
i=1

2N−i∑N
i=1 2N−i

(TTN behind − TTNahead) (6)
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W2 is represents compactness of clusters using a relative congestion factor.
Fist we compute the deviation of the vehicles from the weighted mean of the
cluster they belong to. Then, we subtract this value of the cluster ahead, from
the cluster behind (Equation 7). A low deviation from weighted mean implies
that the vehicles in the cluster are similar in TTN values to the �rst vehicle in
the cluster. It is to be noted that the �rst vehicle considered here, is the one
closest to the SAVE in question. Hence, if the deviation in weighted means in
the cluster ahead is lower than that of the cluster behind, W2 is positive and the
cars ahead are more closely packed compared to the ones behind.

W2 = D(TTNbehind)−D(TTNahead) (7)

where,

D(TTN) =

√∑N
i=1(x̄w − TTNi)2

N
(8)

W3 is used to make the SAVE more sensitive to its immediate neighbourhood.
It uses the TTN values of the vehicle immediately ahead, and immediately
behind. It tries to help the SAVE model achieve an average of these TTN values.
If W3 is positive, the current TTN value is smaller than average, and closer in
proximity to the vehicle ahead. Thus the SAVE uses this weight to equalize
spacing in its close proximity region. This means, when the weight is positive
the current SAVE will increase its time-headway, and thus try falling back in
the relative proximity centre.

W3 =

(
TTNi−1 + TTNi+1

2

)
− TTNi (9)

All three weights when positive intend to increase the time-headway, and
vice-versa when negative. Experiments show that a non-linear combination of
the three weights, in this case multiplying them (Equation 10), results in better
modulation of time-headway than a simple addition.

µ = W1 ∗W2 ∗W3 (10)

� Increase in time-headway: By increasing the time-headway of a vehicle we
increases its distance from the vehicle ahead. This is ideal when we all the
weights are positive. When the cluster ahead is more compact,

4 Experiments

In our experiments, we assume that half of the agent population is human driven
and modeled by HDM. The other half consists of AVs that we model with either
IDM, SAV or SAVE. The BEHAVE simulator was used to simulate a 50km single-
lane highway with vehicle density of 0.067 vehicles per meter. Each simulation
run lasted 45 minutes in real-time, which is signi�cantly faster in the multi-core
enabled simulator having high speed processing capabilities. Results derived from
the experiments were averaged over 20 simulation runs, each.
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Experiment 1 - Congested Tra�c Flow The aim of this experiment is to
analyse the interactions of AVs with HDMs in slow moving tra�c and test the
hypothesis that their presence can improve overall tra�c conditions. This ex-
periment is performed on 4 group settings. The �rst 3 are under mixed tra�c
conditions with 50% HDMs and 50% of each of the 3 AVs . The last group rep-
resents the evaluation of only HDMs by themselves, i.e without the presence of
any AVs. The performance of the models is evaluated in terms of the achieved
throughput, indicative of the capacity of the road, and the average absolute ac-
celeration, indicative of the smoothness of tra�c �ow and the fuel consumption.

1. Throughput: The throughput of our tra�c system is collected as the average
number of cars passing through a chosen set point on the highway in a time
period of 10 minutes.

2. Average Absolute Acceleration: The average fuel consumption of a vehicle,
increases with increase in levels of acceleration among vehicles. The more
the vehicles on the road accelerate the more fuel they will use. The stability
of tra�c and consequently ride comfort is also related to the acceleration
pro�le, however, also includes the amount of deceleration that is performed.
In order to capture both those aspects the average of the absolute value of the
vehicles' accelerations is used as a metric. The absolute value of acceleration
of each vehicle in a simulation run is summed up and averaged at every
time-stamp.

Results from Figure 1 show that the SAVmodels achieved the highest through-
put. The scenario of a pure HDM population produces less than half the through-
put.

The results from Figure2, indicate that the setting comprising only HDMs
results in oscillatory tra�c conditions that exude larger amount of fuel on aver-
age per vehicle while the SAVE vehicles provide the least oscillatory, and thus
e�cient, tra�c conditions.

Experiment 2 - Perturbed Congested Tra�c The aim of this experiment
is to analyse the tra�c conditions under the presence of stop-and-go congestion
waves. The extent to which these waves can a�ect the vehicles in terms of safety,
and the tra�c dynamics in terms of stability.

Similar to the previous experiment, 4 group settings were used i.e 3 with
mixed dense tra�c conditions and the last one representing only human drivers.
Each simulation run had a duration of 45 minutes. After one-third of the run was
done, a trigger event was invoked that caused the leading few vehicles to stop
completely for the average duration of a tra�c signal (1 minute in real-time),
post which they began to accelerate as per their own preferred velocity and, as
permissible by the road density and tra�c conditions. This trigger causes the
phenomena of stop-and-go congestion waves which are observed to propagate
down-stream (away from the source of perturbation).

A congested tra�c with perturbations gives rise to the following important
considerations :
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Fig. 1: Throughput

Fig. 2: Average Absolute Acceleration
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1. Safety : While the AV driver models i.e the IDM, SAV and SAVE are crash-
free, the human driver model HDM is not. The perturbation in tra�c helps
to magnify the safety issues in mixed tra�c.

2. Resilience : The ability of a system to revert back to its state of equilibrium
after being perturbed, shows its resilience to change. A system with greater
resilience can be characterized as more robust or stable. The aim of this
comparative experiment is to realize which of the 3 AV models could result
in a more stable tra�c dynamics, and how long would it take to regain their
equilibrium post perturbation.

The number of crashes for 100 vehicles per 1.5 km in 45 minutes of slow
moving tra�c, is recorded for each of the model set-ups. As can be seen from
Figure3, the number of crashes signi�cantly reduced (by 70% to 80%) when AVs
were mixed in. On an average of 20 simulations, the set-up with AVs controlled
by the SAVE model showed to be the safest scenarios. A system exhibiting stable

Fig. 3: Crashes km/min

tra�c �ow, can be described pertaining to vehicles with minimal change in values
of acceleration, and also equal spacing from one-an-other, making maximum use
of road capacity. For the sake of representing these two criteria, macroscopic
parameters A and D, are used. The Average Absolute Acceleration A which
is representative of the non-smoothness of tra�c conditions. The deviation in
average spacing of the vehicles on the road D gives an idea of about the degree
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of heterogeneity in the distances between the vehicles. This is an indication of
the magnitude of the stop-and-go wave created by the disturbance.

The instability values plotted on the y − axis of Figure 4 are the product
of A and D. The higher this value, the more unstable is the system. The x −
axis represents the time post perturbation in minutes. Each coloured polygon
shows how the system, comprising 50% of the respective AV models, reacts to
the perturbation and recovers from it. The magenta coloured polygon with the
greater area, corresponds to the simulation runs with HDMs only. The black dots
at time 0, are called the equilibrium o�set that represent the initial equilibrium
value for each model set-up. As can be seen, the equilibrium o�set for SAVE
models are the best and most stable. The perturbation trigger is also applied at
this instant causing the peak instabilities.

As the time progresses, the system is expected to converge back to its equilib-
rium o�set. The area under the instability vs. time curve shows how e�ciently
the system mitigates the e�ect of congestion waves. The lesser the area, the
better is the recovery. To determine which model is most stable, we �nd the
product of the equilibrium o�set and the area under the curve , and term it as
the instability index. The HDMs alone, as can be seen, don't seem to converge
back or close to their own system equilibrium. The penetration by 50% AVs has
much of an alleviating e�ect. The instability index of SAVEs is the best, followed
by SAV .

Fig. 4: Stability Recovery of Driver Models with HDMs

The already presented evaluations and comparisons measure the overall macro-
scopic properties of mixed-tra�c scenarios. In order to see how di�erent vehicle
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populations perform in these runs, we extend the analysis done in Experiment 2
by examining the performance metrics of the two driver categories ( i.e human
and autonomous) in every scenario separately. This evaluation is important as
it sheds light on how the presence of AVs in a tra�c scenario, could help bring
about improvements in the performance of human drivers. The comparative ap-
proach also demonstrates which AV model can be more advantageous for this
purpose and to what extent does it sacri�ce its own gaining, in order to bene�t
the other population.

Fig 5, shows the values of the overall macroscopic parameter called Average
Absolute Acceleration A that is computed separately for the HDM and the AV
models and normalized to produce a metric that we call Disturbance. By com-
paring the di�erence between these two values in every group, we observe that:
1) The overall Disturbance for the SAVE + HDM scenario results in the best
collective evaluation (as shown by the black dots), and 2) The SAVs are more
�altruistic� as the di�erence between them and the HDMs is smaller. In other
words, it seems that the SAV perform active acceleration and deceleration ma-
noeuvres in order to minimize the oscillation of the HDMs. This means that, the
human drivers in the presence of SAVs will have a smoother driving experience
and more e�cient fuel consumption, than with SAVEs or IDMs.

Fig. 5: Rate of Deviation from Equilibrium Value of Average Absolute Accelera-
tion for Experiments with 50% HDM and 50% AV Driver Models
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5 Conclusions and Future Work

This paper analyses the interaction between AVs and human-driven vehicles in
tra�c states involving congestion and stop-and-go waves. We design AV driver
models that aim at increasing the bene�cial e�ect AVs can have on overall tra�c
properties as throughput, safety, and resilience of tra�c �ow against perturba-
tions. We compare the performance of the two models that we have designed to
a naive implementation of an AV that does not try to improve tra�c conditions
around it, modeled as an IDM, and to a scenario with only human-drivers.

Having AVs in the system improves all discussed tra�c parameters. Further-
more, the SAV and SAVE models lead to improvements compared to the IDM
model. The main idea behind the SAV model is to stay equidistant to the ve-
hicles in front and behind it. This allows for quick stabilization to normal �ow
conditions after perturbations are introduced to the system and thus the SAV
has the highest resilience score of all tested models. The SAVE model, tries to
improve on tra�c throughput by utilizing information about groups of vehicles
in front and behind to determine whether it is approaching a local congestion
zone. It achieves a better throughput than the other examined models without
compromising the level of safety on the road in terms of number of accidents.

As research on AV technology advances, mixed tra�c conditions will in-
evitably occur sooner rather than later. There are numerous concerns regarding
the safe interaction between AVs and human drivers, mostly due to the unpre-
dictability of humans. It is therefore, important to study those interactions and
to design solutions which mitigate the safety risks while not compromising tra�c
performance. Our results demonstrate that by utilizing more information about
a vehicle's surroundings, high-level control models can be designed in order to
improve both safety and e�ciency of the studied tra�c system. This work can
be considered as a �rst step to utilizing AVs as local tra�c optimizers rather
than just means of transportation.

After we have shown that dedicated strategies might improve the studied traf-
�c characteristics, we see plenty of opportunities to extend this line of research.
Reinforcement learning approaches can be used to come up with a continuously
learning and adapting driver behaviour model. Model predictive control can be
used to guarantee safety and continuously optimize chosen tra�c characteristics.
Apart from extending the variety of tools for optimizing control of car following
models, we can extend those tools into lane changing decision making and overall
vehicle coordination with safety and e�ciency in mind. We would further like
to explore a wider variety of scenarios including on and o� ramps of highways,
tra�c junctions etc. thus also covering urban intelligent transport systems.
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