
Fast-Forwarding Agent States to Accelerate
Microscopic Traffic Simulations

Philipp Andelfinger

TUMCREATE Ltd and

Nanyang Technological University

Singapore

pandelfinger@ntu.edu.sg

Yadong Xu

TUMCREATE Ltd

Singapore

yadong.xu@tum-create.edu.sg

Wentong Cai

Nanyang Technological University

Singapore

aswtcai@ntu.edu.sg

David Eckhoff

TUMCREATE Ltd and

Technische Universität München

david.eckhoff@tum-create.edu.sg

Alois Knoll

Technische Universität München

Germany

knoll@in.tum.de

ABSTRACT
Traditionally, the model time in agent-based simulations is ad-

vanced in fixed time steps. However, a purely time-stepped ex-

ecution is inefficient in situations where the states of individual

agents are independent of other agents and thus easily predictable

far into the simulated future. In this work, we propose a method

to accelerate microscopic traffic simulations based on identifying

independence among agent state updates. Instead of iteratively

updating an agent’s state throughout a sequence of time steps, a

computationally inexpensive “fast-forward” function advances the

agent’s state to the time of its earliest possible interaction with

other agents. To demonstrate the approach in practice, we present

an algorithm to efficiently determine intervals of independence

in microscopic traffic simulations and derive a fast-forward func-

tion for the popular Intelligent Driver Model (IDM). In contrast

to existing acceleration approaches based on reducing the level of

model detail, our approach retains the microscopic nature of the

simulation. A performance evaluation is performed in a synthetic

scenario and on the road network of the city of Singapore. At low

traffic densities, we achieved a speedup of up to 2.8, whereas at

the highest considered densities, only few opportunities for fast-

forwarding could be identified. The algorithm parameters can be

tuned to control the overhead of the approach.

ACM Reference Format:
Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois

Knoll. 2018. Fast-Forwarding Agent States to Accelerate Microscopic Traffic

Simulations. In SIGSIM-PADS ’18 : SIGSIM-PADS ’18: SIGSIM Principles of
Advanced Discrete Simulation CD-ROM, May 23–25, 2018, Rome, Italy. ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3200921.3200923

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the

Association for Computing Machinery.

ACM ISBN 978-1-4503-5092-1/18/05. . . $15.00

https://doi.org/10.1145/3200921.3200923

1 INTRODUCTION
Microscopic traffic simulation models represent the traffic in a road

network on the level of individual vehicles that update their ac-

celeration, velocity and position according to properties of their

environment and nearby vehicles [16]. Typically, the vehicle up-

dates occur at fixed time steps in model time. When considering

scenarios spanning the road traffic of an entire city, this detailed

simulation approach incurs substantial computational demands and

long runtimes. Efforts to accelerate microscopic traffic simulations

can be classified into two categories: hybrid modeling approaches,

and parallel and distributed simulation. In hybrid modeling [1], ar-

eas in the road network are selected for which exact results on the

vehicle level are not required. For such areas, vehicle movement is

simulated in terms of tasks in a queueing network or as traffic flows.

While hybrid modeling can achieve substantial runtime reductions,

the microscopic nature of the simulation is partially surrendered. A

second approach to reducing the runtime is parallel and distributed

simulation, in which the simulation workload is distributed to mul-

tiple interconnected processing elements. Since fixed time steps for

vehicle updates provide natural points for synchronization across

processing elements, microscopic traffic simulators are well-suited

for parallelization. However, when synchronizing at every time

step, the achieved acceleration tends to scale far from linearly with

the number of processing elements [32].

Hence, instead of the commonly applied time advancement using

fixed time steps, some previous works have considered asynchro-
nous state updates for agent-based simulations [2, 17, 22, 29]. Typi-

cally, the neighboring agents considered in an update are limited

spatially by an agent’s sensing range. If an agent is isolated from

other agents for multiple time steps into the simulated future, the

corresponding state updates can be performed without consider-

ing other agents’ states. In parallel simulations, it has been shown

that asynchronous state updates can reduce processor idle times by

prioritizing updates that allow blocked processors to proceed. In

the sequential case, the runtime can be reduced by limiting agent

updates to those required to reach the simulation’s termination cri-

terion, e.g., performing only state updates that affect the state of a

particular agent under consideration [29]. However, the applicabil-

ity of the latter method is limited since satisfying the simulation’s

https://doi.org/10.1145/3200921.3200923
https://doi.org/10.1145/3200921.3200923

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll

termination criterion commonly requires all agents to be at the

same time step.

In this paper, we propose an approach for accelerating inde-

pendent agent state updates using a computationally inexpensive

fast-forward function, which updates the agent state to the first pos-

sible point in model time where an interaction can occur, skipping

the intermediate updates. The approach retains the microscopic

nature of the simulation. To apply the fast-forward function with-

out violating the correctness of the simulation results, intervals

in model time are identified for which agent interactions can be

ruled out. A reduction in simulation execution time is achieved if

the time spent on identifying such independence intervals is smaller

than the time saved through the reduction in time steps.

Thus, we propose an algorithm that predicts independence inter-

vals efficiently for microscopic traffic simulations on road networks

represented by graphs. Further, we derive a fast-forward function

for the well-known Intelligent Driver Model (IDM) [30], which

governs the acceleration behavior of the simulated vehicles. The

benefits of the proposed approach are evaluated in the city-scale

microscopic traffic simulator CityMoS [33], both on a synthetic

road network and on a representation of the road network of the

city of Singapore. Since the benefit of the approach hinges on the

availability and size of independence intervals, the largest perfor-

mance gains are seen in areas of the road network where traffic

is sparse. In cases where independence intervals are small or the

overhead for identifying them is large, our approach has limited or

even no benefit. The overhead can be balanced with the opportuni-

ties for fast-forwarding by adapting the frequency of identifying

independence intervals and the maximum interval size.

The contributions of this paper are as follows:

(1) We propose asynchronous state updates using a fast-forward

function for microscopic traffic simulation.

(2) We propose an algorithm to determine independence inter-

vals to support asynchronous state updates.

(3) We derive a fast-forward function for the Intelligent Driver

Model.

(4) We evaluate the performance benefits of the approach in

simulations using two different road networks.

The remainder of this paper is organized as follows: Section 2

sketches the technical background of our work. Section 3 describes

the proposed fast-forwarding approach. Section 4 provides val-

idation and performance evaluation results. Section 5 describes

remaining limitations and potential enhancements of the approach.

Section 6 discusses related work. Section 7 provides a summary of

our results and concludes the paper.

2 PRELIMINARIES
2.1 Agent-based modeling and simulation
In agent-based simulation, entities called agents are situated in an

environment within the simulation space. An agent’s environment

is composed of static elements and nearby agents. At each point in

model time, each agent has a state defined by a set of state variables.
During a state update, an agent applies update functions to update

the state variables according to the sensed environment. A sensing
range limits the distance up to which the environment is considered.

We refer to a state update that reads the state variables of nearby

agents as an interaction.
Execution mechanisms for agent-based models can be classified

into two categories: in a synchronous execution, the simulation

proceeds in cycles. In each cycle, all agents perform a state update

to advance their states by one time step, which is a fixed delta

in model time. In an asynchronous execution, some agents may

advance their time further into the simulated future than other

agents [29]. The fast-forwarding approach proposed in the present

paper is asynchronous. In contrast to existing approaches, instead

of using iterative time steps, agent states are advanced into the

simulated future through a single invocation of a fast-forward

function.

2.2 Microscopic traffic simulation
In microscopic traffic simulations, agents called driver-vehicle-units

(DVUs) move through the simulation space according to models of

the state and behavior of a human driver as well as of the vehicle

operated by the driver. Typically, the simulation space is a road

network modeled as a directed graph G = (V ,E), where edges

represent roads with one or more lanes and vertices represent

intersections. At each point in model time, each DVU is situated at

a specific position on a lane within an edge.

DVUs perform state updates according to a car-following model

(e.g., [10, 30]) and a lane change model (e.g., [11, 15]). Car-following

models determine the acceleration of a vehicle according to the

characteristics of the driver, the vehicle, and the surrounding traffic

conditions. Commonly, the acceleration is chosen according to a

desired safety gap to the vehicle ahead. Lane change models decide

whether a DVU should change lanes, e.g., based on the current

velocity and vehicles on other lanes. The distance up to which

nearby DVUs are considered is limited by the sensing range. For

simplicity, we refer to DVUs as agents or vehicles throughout the

remainder of the paper.

3 PROPOSED FAST-FORWARDING
APPROACH

As introduced in the previous section, in an agent-based simulation,

agents update their states according to their current environment

and the states of neighboring agents within their sensing range.

When an agent is spatially isolated from others, the current state

update depends only on the environment, which may be static or

highly predictable. The proposed approach is based on the obser-

vation that if it can be guaranteed that the agent remains isolated

up to a certain point in model time, the agent’s state can be up-

dated to this point immediately. By computing such updates using

a fast-forward function that is less computationally expensive than

a sequence of regular state updates, the overall execution time of

the simulation can be reduced.

3.1 Problem definition
In this section, we formally describe state updates in agent-based

simulations using traditional time-stepped updates and the pro-

posed fast-forward function. We loosely follow the formalization

by Scheutz et al. [29], who studied asynchronous state updates

Fast-Forwarding Agent States to Accelerate
Microscopic Traffic Simulations SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy

either to limit state updates to those required for reaching the sim-

ulation’s termination criterion or to decrease communication costs

in distributed simulations. In contrast to their approach, which still

relies on conventional time-stepped agent updates, fast-forwarding

accelerates the simulation by avoiding state updates that are guar-

anteed to be independent of any other agents’ states.

Let τ be the time step size of the simulation. An agent state

update from t to t + τ can be represented as applying a state update
function fτ :

St+τa = fτ (S
t
a , E

t
a ,N

t
a)

where Sta is the state of agent a at simulation time t . We differentiate

between the environment Eta surrounding agent a at t , and the set

of neighboring agents N t
a that are sensed by a at t . Let f kτ denote

applying the state update function k times:

f kτ (Sta , E
t
a ,N

t
a) =

fτ (fτ (. . . (fτ (S
t
a , E

t
a ,N

t
a), E

t+τ
a ,N t+τ

a), . . .),

Et+(k−1)τ
a ,N t+(k−1)τ

a)

We introduce a fast-forward function g, which approximates the

result of iteratively applying fτ given N t+iτ
a = ∅, i ∈ {0, . . . ,k − 1}:

|д(kτ , Sta , E
t
a) − f kτ (Sta , E

t
a , ∅) | = ϵ

where ϵ is the approximation error. If agent a does not sense any

other agent within the next k time steps, the fast-forward functionд
successfully approximates the final state for agent a as if iteratively

applying the state update function fτ . However, since the sensing
relationmay not be symmetric andд does not yield the intermediate

states in (t , t+kτ) required for sensing a, other agents’ state updates
may deviate when applyingд for a. Thus, avoiding deviations across
all agents’ states requires mutual independence:

∀i ∈ {0, . . . ,k − 1} : ((N t+iτ
a = ∅) ∧ (∀a′ ∈ A \ {a} : a < N t+iτ

a′))

where A is the set of agents in the simulation, and ∧ denotes

logical conjunction. We refer to any interval [t , t + kτ] for which

the above holds as an independence interval.

3.2 Identifying independence intervals
To allow for the identification of independence intervals, Scheutz

et al. define a translation function, which “determines for a given

location the maximum distance an agent can travel within one

update” [28]. By determining the area that agents may travel to

within the next k updates, independence intervals can be identified.

In contrast to the translation function, the proposed fast-forward

function determines the full agent state after k updates in case

of independence from other agents’ states. Thus, in contrast to

the iterative time steps used by Scheutz et al., the fast-forward

function allows for agent state updates across multiple time steps

through a single function evaluation. We assume that the fast-

forward function is accompanied by a scanning function, which

additionally yields the time at which an agent first arrives at a given

target distance if independence from other agents’ states is given.

In this section, we propose methods for identifying opportunities

for fast-forwarding. For efficiency, the methods are applied on the

spatial granularity of edges of a graph representing the simulation

space. First, we formulate conditions under which agents can be

fast-forwarded across individual graph edges. Subsequently, we

propose an algorithm to identify fast-forwarding opportunities

across sequences of edges.

We assume that the simulation space, i.e., the road network, is

represented by a graph G = (V ,E) comprised of a set of directed

edges E representing roads, and a set of vertices V representing

intersections. During an agent’s lifetime, the agent traverses a

predefined sequence of connected edges. Each edge traversal may

require multiple state updates. Interactions with other agents can

increase the number of updates required to traverse an edge. Each

edge has an assigned weight l representing its length, l being at least
the sensing range. For simplicity, in our description we disregard

the spatial extent of the agents themselves, which we do however

consider in our implementation of the approach.

3.2.1 Single-link scanning. If an agent a has achieved the high-

est possible velocity on an edge and is located sufficiently far ahead

of all other agents so that it is guaranteed that a will remain outside

any other agent’s sensing range, a may be eligible for fast-for-

warding. To limit our consideration to the agent’s current edge, we

ensure that a cannot yet sense the next edge on its route and cannot

be sensed from the previous edge. More formally, an independence

interval for agent a covers the time interval for which the following

conditions hold:

v (a) = vmax ∧

d (a) > r ∧

d (a) < l − r ∧

∀a′ ∈ Ā \ {a} : d (a′) < d (a) − r

where v (a) and d (a) are agent a’s current velocity and position on

the current edge, Ā is the set of agents on the same edge as a, r is
the sensing range, l is the length of the current edge, and vmax is

the speed limit on the edge.

3.2.2 Multi-link scanning. We now extend the identification of

independence intervals to sequences of graph edges (cf. Figure 1).

Our goal is to determine for each agent an interval during which

the agent never shares an edge with another agent. In the following,

we describe Algorithm 1, which determines such intervals.

The algorithm proceeds in two stages: in the first stage, each

agent registers its occupancy intervals at the edges that may be

traversed within a configurable scanning horizon. The scanning

horizon limits the scanning overheads. Each edge stores the earli-

est time it is sensed by any agent (occupiedFrom), with an initial

value of ∞. If a registering agent exits the edge earlier than the

current value of occupiedFrom, we store the agent as a candidate

for fast-forwarding (earliestAgent), together with its sensing time

and exit time. Otherwise, the registering agent may interact with a

previously registered agent; thus, we set earliestAgent to nil.
In the second stage, each agent once again iterates over the

edges reachable within the scanning horizon. Starting at an agent

a’s current edge, agent a can be fast-forwarded across the longest

sequence of edges for which earliestAдent = a and for which the

exit time is within the scanning horizon.

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll

a0

a1

e0

e1

e2
a1

a0

(a) Two agents a0, a1 passing the same edge e2.

t0
tmodel

e0

e1

e2

a0
a1

a0
a1

a0
a1

(b) Occupancy intervals for edges e0, e1, e2. Since a0 and a1 never share
their starting edges with other agents, they can be fast-forwarded
across e0 and e1, respectively. Further, since a0 and a1 never occupy
e2 at the same time, both can be fast-forwarded across e2. Thus, at
minimum, the independence intervals of both a0 and a1 extend to the
time at which the successor edge to e2 is sensed.

Figure 1: Example of identifying independence intervals
across multiple graph edges.

By limiting fast-forwarding to the agent who first occupies an

edge, some opportunities are not exploited. An example is given

in Figure 1: although agent a0 never occupies edge e2 at the same

time as a1, a0 will not be fast-forwarded across edge e2. To limit the

costs of the scanning process, we do not consider such situations.

The size of the independence intervals depends on the scanning

horizon as well as the period in model time after which single-link

and multi-link scanning are repeated, which must be balanced with

the incurred scanning overhead. Our implementation evaluated

in Section 4 applies single-link and multi-link scanning with a

configurable period length in model time. The effects of varying

the scanning parameters are evaluated in Section 4.2.

3.3 Fast-forward function for the Intelligent
Driver Model

In this section, we derive a fast-forward function and a scanning

function for the Intelligent Driver Model (IDM). Instead of deter-

mining a vehicle’s future states iteratively throughout multiple time

steps, given independence from other vehicles, the functions will

directly yield the vehicle state or the time. At a point t
initial

in model

time, we have a vehicle’s current state given by its velocity v
initial

and position d
initial

. To be able to fast-forward vehicles, our goal is

to calculate the vehicle state after t additional units of time. The

state is comprised of the velocity v
final

and the position d
final

. We

refer to the function that yields these two values as the fast-forward
function. Further, for identifying independence intervals, we re-

quire the velocity v
projected

and time t
projected

at which a vehicle

Algorithm 1 Identifying independence intervals across multiple

graph edges.

1: procedure stageOne
2: for each a ∈ A do
3: e← a.currentEdge
4: sensingTime← currentTime
5: exitTime← currentTime+ travelTime(a, e, e.length− a.position)
6: register(e, a, sensingTime, exitTime)
7: sensingTime← currentTime +
8: travelTime(a, e, e.length−a.position− sensingRange)
9: e← a.getSuccessorEdgeOnRoute(e)
10: while e , nil and exitTime ≤ scanningHorizon do
11: nextSensingTime← exitTime +
12: travelTime(a, e, e.length− sensingRange)
13: exitTime← exitTime + travelTime(a, e, e.length)
14: register(e, a, sensingTime, exitTime)
15: sensingTime← nextSensingTime
16: e← a.getSuccessorEdgeOnRoute(e)
17: procedure stageTwo

18: for each a ∈ A do
19: upperBoundTime← −1

20: e← a.currentEdge
21: while e , nil do
22: if e.earliestAgent , a then
23: break
24: e← a.getSuccessorEdgeOnRoute(e)
25: upperBoundTime← e.occupiedFrom
26: if upperBoundTime , −1 then
27: a.setIndependenceInterval(currentTime, upperBoundTime)
28: procedure register(e, a, sensingTime, exitTime)
29: if exitTime >= currentTime + scanningHorizon then
30: exitTime← ∞
31: if exitTime < e.occupiedFrom then
32: e.earliestAgent← a
33: e.earliestAgentExitTime← exitTime
34: else if sensingTime ≤ e.earliestAgentExitTime then
35: e.earliestAgent← nil
36: e.occupiedFrom← min(e.occupiedFrom, sensingTime)

has traveled an additional distance d . We refer to the function that

yields these two values as the scanning function.
In IDM, vehicles accelerate according to the following differential

equation [30]:

dv

dt
= a0

*
,
1 −

(
v

v0

)δ
−

(
s0 +vT + (v∆v)/(2

√
a0b0)

s

)2

+
-

Here, a0 is the maximum acceleration, v is the current velocity, v0

is the target velocity, s0 is the minimum desired distance to the

vehicle ahead, b0 is the comfortable braking deceleration, and s and
∆v are the position and velocity differences to the vehicle ahead. δ
is a parameter typically set to 4 [30]. We perform our computations

for this value.

When IDM is employed in time-stepped microscopic traffic sim-

ulations, the above equation is evaluated at each time step for each

vehicle to calculate the vehicle’s acceleration and to update its

velocity and position accordingly.

Typically, a sensing range r is applied that limits the distance up

to which vehicles adapt their acceleration to other nearby vehicles.

Fast-Forwarding Agent States to Accelerate
Microscopic Traffic Simulations SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy

For s > r , the acceleration is determined solely by the free road
term:

dv

dt
= a0

(
1 − (

v

v0

)δ
)

For δ = 4, integration after separation of variables yields the time

required to accelerate from 0m/s to v :

t (v) =
v0

4a0

(
− log(v0 −v) + log(v0 +v) + 2 arctan(

v

v0

)

)
When accelerating from initial velocity v

initial
> 0m/s, the time

elapsed when velocity v is reached is given by:

tvinitial
(v) = t (v) − t (v

initial
)

The distance that the vehicle has traveled when reaching velocity

v can be obtained as follows:

d (v) =

∫
v

a(v)
dv =

v2

0

2a0 arctanh

(
(vv0

)2
)

Solving for v:

v (d) = v0

√√
− tanh

*
,
−

2a0d

v2

0

+
-

Now we have the components of the scanning function:

v
projected

= v (d + d (v
initial

))

t
projected

= t
initial

+ t
(
v
projected

) − t (v
initial

)
After skipping state updates, we must allow the simulation to re-

sume regular time-stepped agent state updates. Thus, we round to

the nearest smaller timestep t
final

and calculate the components of

the fast-forward function:
v
final
= v (t

final
)

d
final
= d

initial
+ d (v

final
)

We do not have a closed form for v (t). However, since t (v) is twice
differentiable, we can postulate t (v)−t = 0 and apply Halley’s root-

findingmethod [9] to computev numerically at cubical convergence

speed. We terminate once the change in values is below 10
−10

.

Due to varying speed limits among the roads in a traffic simu-

lation, vehicles may exceed the speed limit if the limit decreases

among subsequent roads. An extension to IDM has been proposed

to apply decelerations to vehicles using the following differential

equation [16]:

dv

dt
= −a0

(
1 − (

v0

v
)δ

)
We derive fast-forward and scanning functions for this situation as

well. For δ = 4, integration after separation of variables yields:

t (v) = −
1

2a0

(
v0 (arctan(

v0

v
) − arctanh(

v0

v
)) + 2v

)
We can obtain the distance at velocity v as follows:

d (v) =

∫
v

a(v)
dv = −

1

2a0

(
(v2 −v2

0
) arctanh((

v0

v
)2)

)
Here, we apply Halley’s method to obtainv (d) andv (t) and proceed
as above.

Nowwe have fast-forward and scanning functions covering both

acceleration and deceleration based on the continuous formulation

of IDM. Since the time-stepped state updates in a simulation only

approximate the acceleration behavior prescribed by the model, a

deviation occurs between the fast-forward function and iterative

time steps. The magnitude of the deviation depends on the time

step size τ and vanishes for τ → 0. The effects of the deviation are

discussed in the following section. We quantify the deviation in

Section 4.1.

3.4 Discussion
IDM is defined by a time-continuous differential equation specifying

a vehicle’s acceleration behavior. Time-stepped microscopic traffic

simulations approximate the specified behavior by calculating new

acceleration values at each time step and updating the vehicles’ ve-

locities and positions accordingly. Smaller time step sizes increase

the quality of the approximation, but are associated with higher

computational cost. In contrast, the fast-forward function produces

a “smooth” acceleration behavior without discretization to interme-

diate time steps. As such, updates performed using the fast-forward

function can in fact be considered more in line with the intended

acceleration behavior of IDM than iterative time-stepped updates.

Still, when applying fast-forwarding, the simulation results will

deviate from a purely time-stepped execution. A further potential

source of deviations is given by the fact that occupancy intervals

are determined using the scanning function, and are therefore af-

fected by deviations as well. When a vehicle does not approach a

road segment using the fast-forward function but using iterative

time steps, the predicted occupancy interval may slightly deviate

from the observed interval during which the vehicle occupies the

road segment. Thus, it is possible that a vehicle is fast-forwarded

based on the incorrect assumption that it will be isolated on the

road segment. However, if the edges of the considered graph are

substantially longer than the sensing range, it is unlikely that that

such a deviation will lead to a vehicle entering another vehicle’s

sensing range. We did not observe this latter type of deviation in

our experiments.

4 EVALUATION
In this section, we aim to answer the following questions:

• How large is the deviation in the simulation results between a
purely time-stepped execution and the proposed fast-forward-
ing approach?
• In which scenarios and to what degree can fast-forwarding
accelerate microscopic road traffic simulations?

Our evaluation is performed using the city-scale microscopic

traffic simulator CityMoS [33]. Two road networks are considered:

a synthetic grid-shaped road network (cf. Figure 2a), and a repre-

sentation of the road network of Singapore (cf. Figure 2b). The grid

network is comprised of 64 × 32 rectangles, each edge being 200m

in length. There are two edges between two adjacent vertices with

opposite traffic directions, resulting in a total length of 1600km. In

the Singapore network, the average and total length of the edges is

around 36.2m and 8700km, respectively. In both scenarios, origin

and destination pairs are chosen uniformly at random on the road

network. Route planning is based on Dijkstra’s algorithm, using the

edges’ lengths and speed limits as their weights. Agents start their

trips uniformly at random in model time. In the grid scenario, we

started the measurements after a warm-up phase of 1800s to achieve

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll

(a) Grid road network with around 10 000 vehicles.

(b) Singapore road network with around 19 500 vehicles.

Figure 2: Considered road networks with traffic, blue dots
denoting vehicles.

roughly constant agent populations of 500, 2 000, and 10 000. After

the warm-up phase, each measurement continued for 1h of model

time. In the Singapore scenario, we used a warm-up phase of 1800s

and subsequently measured the performance for 1h of model time

while the agent population is ramping up to about 6 000 and 19 500

agents, respectively. Vehicles accelerate according to IDM[30] and

perform lane changes according to the rules described in [32]. We

configured a sensing range of 40m facing forward.

We varied the following algorithm parameters:

• Single-link and multi-link scanning period: the identi-
fication of independence intervals and the fast-forwarding

are performed periodically. Since the scanning overhead

depends on whether individual graph edges or sequences

of graph edges are considered, the period length for each

variant is varied separately.

• Scanning horizon: the overhead of scanning and the size

of independence intervals depend on the maximum delta in

model time that agents may be fast-forwarded.

For the grid scenario, we performed a parameter sweep to study

the effect of different parameter combinations on the simulation

performance. The levels in seconds of model time were {0.5, 2, 8, 32}

and {0.5, 2, 8, 32, 128} for the single-link and multi-link scanning

period, and {16, 64, 256} for the scanning horizon. In the Singapore

scenario, we applied a simple auto-tuning approach to select and

vary parameter combinations at runtime: a set of preconfigured

parameter combinations is set one after the other, measuring the

simulation progress per unit wall-clock time for each combination.

The simulation then proceeds with the best-performing parame-

ter combination. The auto-tuning process is repeated once either

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 10 20 30 40 50 60

V
el

oc
ity

 [m
/s

]

Time [s]

Fast-forward function
Time-stepped

Figure 3: Example of the velocity calculated using time-
stepped updates and fast-forwarding on a sequence of road
segments with randomized lengths and speed limits, for a
time step size of 0.5s.

1200s of model time have passed or the simulation performance

has changed by more than a factor of 2. We configured the follow-

ing parameter combinations for the single-link scanning period,

multi-link scanning period, and the scanning horizon: (2, 32, 64), (2,

128, 64), (4, 32, 64), (4, 128, 64), and (2,∞, 64). In the grid scenario,

each simulation run was repeated at least 3 times. Each run of the

Singapore scenario was repeated 20 times. All performance mea-

surements were performed on a single core of an Intel i5-7400 CPU

running at 3.00GHz with 16GiB of RAM.

4.1 Validation
To evaluate the deviation between the simulation results of a purely

time-stepped execution and our fast-forwarding approach, we first

consider a single vehicle and compare the distance after a certain

amount of model time when traversing a sequence of road segments

with varying speed limits. We then compare aggregated statistics

over all vehicles across entire simulation runs.

4.1.1 Individual fast-forwarding operations. The relationship

between time-stepped and fast-forwarding updates is illustrated

in Figure 3. We plot the velocities computed using time-stepped

updates on a sequence of road segments of randomized lengths and

speed limits, and compare the results with those of evaluating the

fast-forward function at the end of each road segment. Visually, the

deviation between the two methods is marginal.

To quantify the deviation, we recorded the relative deviation

between a vehicle’s position calculated using fixed time steps and

fast-forwarding after 60s of traveling time across a sequence of

roads with lengths uniformly distributed between 50m and 500m

and speed limits uniformly distributed between 10m/s and 30m/s.

We performed 10 000 runs each for step sizes of 0.1s and 0.5s. The

overall distance traveled was between about 625m and 1630m. The

result is shown in Figure 4. Most deviations are lower than 0.3%

for time step size 0.1s, and lower than 1.5% for time step size 0.5s.

The largest observed deviations were 0.85% and 3.29%, respectively.

The slight bias towards negative deviations is likely due to the use

of different equations for acceleration and deceleration behaviors

(cf. Section 3.3). However, as discussed in Section 3.4, we note

that since the fast-forward function is based directly on the time-

continuous formulation of IDM, the results after fast-forwarding

may in fact be considered closer to the desired acceleration behavior

than the results after a sequence of time-stepped updates.

Fast-Forwarding Agent States to Accelerate
Microscopic Traffic Simulations SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

R
el

at
iv

e
fr

eq
ue

nc
y

Deviation [%]

(a) Time step size 0.1s.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-1.5 -1 -0.5 0 0.5 1 1.5

R
el

at
iv

e
fr

eq
ue

nc
y

Deviation [%]

(b) Time step size 0.5s.

Figure 4: Relative deviation between positions calculated us-
ing iterative time steps and fast-forwarding after 60s of trav-
eling time across a sequence of road segments with random-
ized lengths and speed limits.

Table 1: Average trip durations [s] in time-stepped and fast-
forwarding runs with 95% confidence intervals.

Scenario Grid
Agent count 500 2 000 10 000
Time-stepped 371.4 ± 0.6 371.0 ± 0.6 377.4 ± 0.1

Fast-forwarding 371.4 ± 1.6 371.0 ± 2.6 377.3 ± 0.3

Scenario Singapore
Peak agent count 6 000 19 500
Time-stepped 859.2 ± 4.0 1096.5 ± 5.3

Fast-forwarding 860.0 ± 3.8 1099.7 ± 5.9

4.1.2 Grid and Singapore scenarios. For the grid and Singapore

scenarios, we conduct the validation with respect to the average

trip duration, which is a commonly studied metric in transporta-

tion engineering. The comparison results are shown in Table 1. We

performed a parameter sweep across the scanning parameters for

the grid scenario. The validation results are given for the parameter

combinations resulting in the lowest execution times. For the Sin-

gapore scenario, the parameters were configured at runtime using

auto-tuning. The time step size was 0.1s. We observe that in both

scenarios, there is no significant deviation in the overall simulation

results between the time-stepped execution and fast-forwarding.

4.2 Performance measurements
4.2.1 Fast-forward function. To understand the potential for

performance gains using the proposed approach, we first compare

the computational cost of iterative time-stepped agent updates and

updates using the proposed fast-forward function. We simulate

 0.1

 1

 10

 100

 1 2 4 8 16 32 64 128 256 512

E
xe

cu
tio

n
tim

e
[µ

s]

Number of time steps

Time-stepped
Fast-forwarding

Figure 5:Wall-clock computation time required for a certain
number of steps using time-stepped execution and fast-for-
warding for a time step size of 0.1s.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0.5 2 8 32

A
v
g

.
fa

s
t-

fo
rw

a
rd

e
d

 t
im

e
 s

te
p

s
Single-link and multi-link scanning period [s]

Number of agents: 500
2,000

10,000

Figure 6: Average number of time steps skipped per fast-for-
warding operation in the grid scenario with a fixed scan-
ning horizon of 64s and identical single-link and multi-link
scanning periods. Although larger scanning periods provide
fewer fast-forwarding opportunities, the number of time
steps per individual fast-forwarding operation increases.

a single vehicle on a road segment of 10km length. Initially, the

velocity is 0km/h. The vehicle accelerates to the speed limit of

100km/h. In Figure 5, we compare the wall-clock time required

to execute a certain number of time steps to the time required to

advance a vehicle by the same distance using fast-forwarding. Due

to the fine-grained nature of agent updates, each measurement was

repeated 10
7
times in the time-stepped case, and 100 000 times for

fast-forwarding. The figure shows averages over the repetitions.

95% confidence intervals are plotted but are too small to be visible.

Figure 5 shows that the execution time of the fast-forward func-

tion is roughly constant, whereas the execution time of time-stepped

updates depends approximately linearly on the number of steps. Al-

though the fast-forward function is associated with higher compu-

tational cost than an individual time-stepped state update, fast-for-

warding outperforms time-stepped updates beyond 4 consecutive

steps. Thus, assuming no additional overheads, fast-forwarding is

beneficial when the average number of fast-forwarded time steps

is larger than 4. Generally, reducing the time step size of the sim-

ulation will allow for a larger number of skipped time steps per

fast-forwarding operation. However, due to the overall increase in

time steps, the proportion of skipped time steps across the simula-

tion run will remain roughly the same.

4.2.2 Grid scenarios. Figure 6 shows the average number of time

steps skipped per fast-forwarding operation in the grid scenario

with a time step size of 0.1s, varying the single-link and multi-link

scanning periods. Even in the most congested scenario with 10 000

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll

 0

 1

 2

 3

 4

 5

 6

 0.5 1 2 4 8 16 32

Single-link scanning period [s]

Ideal speedup
Measured speedup

(a) Multi-link scanning period 8s, scanning horizon 64s.

 0

 1

 2

 3

 4

 5

 6

 0.5 1 2 4 8 16 32 64 128

Multi-link scanning period [s]

Ideal speedup
Measured speedup

(b) Single-link scanning period 2s, scanning horizon 64s.

 0

 1

 2

 3

 4

 5

 6

 16 32 64 128 256

Scanning horizon [s]

Ideal speedup
Measured speedup

(c) Single-link scanning period 2s, multi-link period 8s.

Figure 7: Ideal andmeasured speedup with 500 agents in the
grid scenario.

agents, around 50 time steps were skipped per fast-forwarding

operation, far beyond the break-even point of 4 time steps shown

in Figure 5.

Figures 7 to 9 show the overall speedup achieved using the fast-

forwarding approach compared with a purely time-stepped execu-

tion for the grid scenario for 500, 2 000, and 10 000 agents, respec-

tively. In addition, we plot the relative reduction in state updates,

which indicates the ideal speedup through the fast-forwarding

approach when disregarding the overhead for identifying indepen-

dence intervals and the evaluation of the fast-forward function. For

instance, if the number of time steps is reduced by 50%, the ideal

speedup is 2.

We can observe in Figure 7 that due to substantial opportunities

for fast-forwarding with only 500 agents, frequent single-link and

multi-link scanning and a large scanning horizon are beneficial.

In Figure 7b, when the multi-link scanning period is increased,

the ideal speedup decreases substantially from multi-link scanning

periods of 2s to 8s. However, the measured speedup is virtually un-

changed due to the trade-off between the scanning overhead and the

benefit of skipping updates. The largest speedup achieved with 500

agents is 2.82 with single-link and multi-link scanning periods of 2s

and 8s, and a scanning horizon of 64s. With 2 000 agents (cf. Fig. 8),

the trade-off between identifying opportunities for fast-forwarding

and the associated overhead becomes more pronounced: a speedup

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 1 2 4 8 16 32

Single-link scanning period [s]

Ideal speedup
Measured speedup

(a) Multi-link scanning period 8s, scanning horizon 64s.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0.5 1 2 4 8 16 32 64 128

Multi-link scanning period [s]

Ideal speedup
Measured speedup

(b) Single-link scanning period 0.5s, scanning horizon 64s.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 16 32 64 128 256

Scanning horizon [s]

Ideal speedup
Measured speedup

(c) Single-link scanning period 0.5s, multi-link period 8s.

Figure 8: Ideal and measured speedup with 2 000 agents in
the grid scenario.

of 1.91 is achieved with single-link and multi-link scanning periods

of 0.5s and 8s, respectively, and a scanning horizon of 64s, whereas

no speedup is achieved when decreasing the multi-link scanning pe-

riod of 0.5s (cf. Fig. 8b). Compared to the above two cases, the most

congested scenario with 10 000 agents (cf. Fig. 9) provides fewer

opportunities for fast-forwarding. Additionally, since the costs of

identifying independence intervals increases with the number of

agents, frequent multi-link scanning is not beneficial. A maximum

speedup of 1.12 is achieved with single-link andmulti-link scanning

periods of 0.5s and 128s, and a scanning horizon of 16s.

Overall, the measurements show that controlling the overhead

for identifying independence intervals is critical when applying our

approach in practice. Further, the opportunities for fast-forwarding

decrease with denser traffic.

4.2.3 Singapore scenario. The performance results for the Sin-

gapore road network are shown in Table 2. We observe that 22.1%

and 10.3% of time steps were skipped using auto-tuning for peak

agent counts of 6 000 and 19 500, respectively. The average number

of time steps per fast-forwarding operation for both cases is much

larger than the break-even point of 4 steps (cf. Figure 5). With 6, 000

agents, a speedup of 1.22 is achieved. With 19 500 agents, only few

opportunities for fast-forwarding could be identified, allowing for

a speedup of 1.05.

Fast-Forwarding Agent States to Accelerate
Microscopic Traffic Simulations SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy

 0

 0.5

 1

 1.5

 2

 0.5 1 2 4 8 16 32

Single-link scanning period [s]

Ideal speedup
Measured speedup

(a) Multi-link scanning period 0.5s, scanning horizon 16s.

 0

 0.5

 1

 1.5

 2

 0.5 1 2 4 8 16 32 64 128

Multi-link scanning period [s]

Ideal speedup
Measured speedup

(b) Single-link scanning period 0.5s, scanning horizon 16s.

 0

 0.5

 1

 1.5

 2

 16 32 64 128 256

Scanning horizon [s]

Ideal speedup
Measured speedup

(c) Single-link scanning period 0.5s, multi-link period 128s.

Figure 9: Ideal and measured speedup with 10 000 agents in
the grid scenario.

Table 2: Performance in the Singapore scenario with scan-
ning parameters configured using auto-tuning.

Peak agent count 6 000 19 500
Time-stepped execution time [s] 214.3 ± 3.4 789.1 ± 5.9

Steps skipped [%] 22.1 ± 0.1 10.3 ± 0.1

Steps skipped per fast-forwarding 85.45 ± 0.16 81.4 ± 0.15

Scanning overhead [s] 2.5 ± 0.0 7.4 ± 0.1

Fast-forwarding overhead [s] 2.0 ± 0.0 4.9 ± 0.0

Speedup 1.22 ± 0.03 1.05 ± 0.01

5 DISCUSSION
In this section, we discuss limitations and potential enhancements

of the proposed fast-forwarding approach.

Applicability tomore complexmodels and other domains:
in the present paper, we assume that the fast-forward and scanning

functions return a single agent state and time, implying that the

routes of the agents (i.e., the sequences of edges) will not change

after scanning has been performed. Depending on the considered

simulation model, agents may change their routes on interaction

with other agents or even spontaneously. For instance, an agent may

re-route when it detects traffic congestion. To consider such models,

we could either terminate the scanning process at the first point in

time when a change is possible, or determine occupancy intervals

for all possible branches. Both approaches may substantially reduce

the opportunities for fast-forwarding compared to what has been

shown in the simulation scenarios of the present paper. If routing

decisions are made stochastically, pre-sampling from the pseudo-

random number stream may still enable prediction of the agents’

routes. In the extreme case of entirely unpredictable routes, fast-

forwarding would be limited to disjoint areas reachable by agents

according to their maximum velocity.

From the problem analysis in Section 3.1, we can infer that the

applicability of our approach to other types of time-stepped agent-

based simulations depends on the specific models used. The ap-

proach is applicable to models that allow for the prediction of future

agent states and to scenarios where independent agent updates oc-

cur. For instance, in crowd simulations using predefined routes on

a two-dimensional simulation space, the path taken by isolated

agents may be fully predictable. The performance benefits of the

approach depend on the computational cost of the fast-forward

function relative to time-stepped updates as well as the costs for

determining independence intervals.

Deviations compared to time-stepped execution: As dis-

cussed in Section 3 and evaluated in Section 4.1, state updates

performed using the fast-forward function deviate slightly from

those performed using iterative time steps. Although the fast-for-

ward function can be argued to be closer to the behavior specified in

IDM and the deviations are low, two undesirable properties emerge:

first, as with any state alteration in an agent-based simulation, de-

viations may propagate through the road network. Second, the

deviations depend on the parametrization of the fast-forwarding

approach, i.e., on the frequency of scanning and on the scanning

horizon. Thus, the approach interlinks the execution of the sim-

ulation and the observed behavior of the simulation. Ideally, to

allow modelers to clearly identify cause-and-effect relationships

when modifying the model or scenario, these two aspects should

be decoupled.

Influence on statistics collection and visualization: Typi-
cally, in an agent-based simulation, statistics are gathered by peri-

odically aggregating over the states of the agents in the simulation,

e.g., over the velocities of the vehicles on a road network. Usually,

the period of aggregation is a multiple of the time step size. If up-

dates are performed asynchronously according to the proposed

approach, agents may be fast-forwarded beyond the point when

statistics are to be collected. A simple solution is to limit the scan-

ning horizon to the next statistics gathering time. Visualization

tools could apply interpolation to approximate agent states at time

steps that have been skipped through fast-forwarding.

Further opportunities for fast-forwarding: the proposed

multi-link scanning approach operates on the granularity of edges

in a road network. Thus, if the modeled road network has a high

percentage of edges that are substantially longer than the sens-

ing range of vehicles, many opportunities for fast-forwarding are

not exploited. By identifying independence intervals on a finer

granularity, additional fast-forwarding opportunities could be un-

locked. However, more complex scanning may incur an increase in

overhead. Further, for efficiency, we limited fast-forwarding to the

first agent that senses a graph edge. Fast-forwarding of multiple

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll

agents occupying the same edge at disjoint time intervals within

the scanning horizon may enable further speedup in some scenar-

ios. Further, in road traffic simulations that consider traffic lights,

trivial opportunities for fast-forwarding may be given for vehicles

stopped in front of traffic lights. Such vehicles can be fast-forwarded

to the next state change of the traffic lights. Finally, we only con-

sider skipping opportunities for individual agents. An increase in

fast-forwarding opportunities may be possible if the fast-forward

function can be extended to clusters of agents.

Controlling overhead: a number of ways present themselves

to control the scanning overhead and thus to enable more complex

scanning procedures: first, the proposed algorithm is parametrized

with the scanning periods and scanning horizon. Our evaluation

showed that the optimal values for the parameters depend strongly

on the considered scenario. Thus, we applied a simple auto-tuning

scheme to adapt the scanning parameters according to the traffic

conditions of the Singapore scenario.

Second, in addition to the variation of congestion across model

time, congestion also typically shows variations across the simu-

lated space. For instance, during peak hours a highly congested

speedway will provide few opportunities for fast-forwarding, in

contrast to sparsely populated roads in residential areas. In such

situations, to avoid unnecessary computations, scanning could be

restricted to areas outside congested areas. However, further consid-

erations are then required to maintain correctness. Since vehicles

may enter or exit congested areas within the considered scanning

horizon, excluding agent interactions would require a safety mar-

gin around these areas, which could be defined based on static

information such as speed limits.

Finally, the scanning operation may be offloaded to a separate

processor. Within the accuracy allowed by the time step size, pre-

viously identified occupancy intervals may be outpaced by the

simulation’s progress, but not invalidated. Thus, after scanning,

fast-forwarding could be applied to all agents that have not yet

progressed beyond the target time. Further, during scanning, the

scanning function is evaluated a number of times for each rele-

vant vehicles independently, providing ample opportunities for

parallelization, e.g., on graphics processing units.

6 RELATEDWORK
In this section, we give an overview of previous work focusing on

identifying and exploiting independence between state updates for

parallelization of discrete-event simulations and for accelerating

sequential and parallel time-stepped agent-based simulations. Fur-

ther, we discuss hybrid modeling and simulation approaches that

execute parts of a simulation microscopically, while applying less

detailed and therefore less computationally intensive models for

parts of the simulation where full accuracy is not required.

6.1 Exploiting independent state updates
The approach proposed in the present paper bears some similarities

with methods from the field of parallel and distributed simulation,

which is concerned with the execution of individual simulation

runs on a set of inter-connected processing elements [8]. To reduce

the cost of synchronization between processing elements, meth-

ods have been proposed to exploit lookahead, i.e., the difference in

model time between an event’s creation and execution time [7]. If

a lower bound on the lookahead can be determined either prior

to the simulation or at runtime [18, 24], intervals in model time

can be identified during which processing elements can compute

independently. Some previous works consider the minimum model

time required for a sequence of events to propagate to a remote pro-

cessing element [3, 4, 19, 20, 23, 27, 31]. Similarly to our approach,

intervals of independence are derived according to the topology of

the modeled system. However, instead of exploiting the identified

independence for parallel execution, in our work, we accelerate

sequential simulations by performing independent agent state up-

dates using a computationally inexpensive fast-forward function.

A further similarity exists to optimistically synchronized parallel

and distributed simulations [6, 26], where some computations are

performed speculatively and rolled back when a violation of the

simulation correctness is detected. In our approach, the identifica-

tion of occupancy intervals can be seen as speculative state updates

under the assumption of independence among agents. When in-

dependence between the agent updates cannot be guaranteed, the

results are discarded.

Some previous works have considered ways of accelerating time-

stepped agent-based simulations by identifying independent state

updates among agents: Scheutz et al. [13, 28, 29] apply a translation
function that reflects the furthest possible amount of movement of

an agent to determine an event horizon in model time. By identifying

non-overlapping areas among multiple agents’ event horizons, time

intervals of mutually independent updates can be identified. Now,

in the context of sequential agent-based simulations, agent updates

can be prioritized to achieve the simulation’s termination criterion

with the minimum number of state updates. For instance, if the

focus of the simulation study is on a particular agent, only the

state updates directly or indirectly affecting this agent must be

performed. In distributed agent-based simulations, idle times due

to data dependencies can be reduced by prioritizing agent updates

according to the data dependencies across processing elements.

In contrast to our work, runtime reductions are achieved through

changes in the ordering of agent updates, not through accelerating

the state updates themselves. Since road traffic simulations are

typically executed until all agents have reached a certain point in

model time, the approach by Scheutz et al. would not accelerate

such simulations.

Buss et al. [2] proposed a discrete-event modeling approach for

scenarios involving movement and sensing. Instead of explicitly

updating an entity’s location over a sequence of time steps, events

are scheduled at points in model time where changes in movement

occur. However, determining suitable event scheduling times for

sets of interacting vehicles may incur substantial overhead. Thus,

in contrast to the purely discrete-event approach proposed by Buss

et al., our proposed fast-forwarding approach maintains a time-

stepped execution for all agents currently involved in an interaction.

Further, while the work by Buss et al. and another work with a

similar focus by Meyer [22] share with ours the general idea of

avoiding explicit intermediate state changes, the main challenge

lies in determining the points in model time when interactions

between entities may occur and in determining the new agent state.

In the present paper, we address these challenges in the context of

microscopic road traffic simulations.

Fast-Forwarding Agent States to Accelerate
Microscopic Traffic Simulations SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy

Less closely related to our approach is the concept of simulation

cloning [14]. In this approach, the total execution time of a set of

simulation runs is reduced by computing only the divergent state

updates across multiple runs. For instance, if the behavior of only a

single agent is modified across multiple runs, state changes of other

agents that are unaffected by this agent are not recomputed [25].

Similarly, in updatable and exact-differential simulation [5, 12],

intermediate events of an initial full simulation run are stored.

Subsequent simulation runs branch off from this initial simulation

run, reusing stored events that are unaffected by the branching.

As in these approaches, fast-forwarding exploits the independence

between state updates to accelerate simulations. However, instead

of avoiding recomputation, the fast-forwarding approach proposed

in the present paper avoids computation of some updates entirely.

Finally, the term “fast-forwarding” was used previously in other

contexts where existing information is exploited to advance a sim-

ulated entity in model time. In the updatable simulations proposed

by Ferenci et al. [5], some repeated event executions can be avoided,

thus “fast-forwarding” the corresponding simulated entity. Mauve

et al. [21] use the term “fast forward” to describe the re-execution of

events after a rollback in the context of optimistic synchronization

for distributed virtual environments.

6.2 Hybrid traffic simulation
In hybrid traffic simulation [1], microscopic models are combined

with mesoscopic or macroscopic models to balance simulation fi-

delity and performance. Spatial or temporal segments of the sim-

ulation are selected in which a reduction in modeling detail and

accuracy is acceptable. In these segments, vehicles are considered in

aggregate, e.g., as sets of tasks in a queuing network or in terms of

fluid dynamics. As a consequence, it is not always possible to study

an individual vehicle across its entire route. The fast-forwarding ap-

proach proposed in the present paper bears a superficial similarity

with hybrid traffic simulation in its reliance on an analytical solu-

tion for some of the state updates instead of a purely time-stepped

execution. However, fast-forwarding is applied only if it is ensured

that within the accuracy allowed by the simulation’s time step size,

the simulation results are unaffected. Since fast-forwarding does

not consider agents in aggregate, each vehicle’s progress on its

route can still be studied individually.

7 CONCLUSIONS AND OUTLOOK
We propose an approach to accelerate microscopic traffic simulation

by identifying intervals of independent state updates and perform-

ing such independent updates using a computationally inexpensive

fast-forward function. The approach maintains the microscopic

nature of the simulation. We derived a fast-forward function for

the well-known Intelligent Driver Model. We evaluated the ap-

proach for a synthetic scenario and the road network of the city of

Singapore. Our validation shows that the deviation from a purely

time-stepped execution is marginal. The performance benefit of the

approach depends strongly on the level of agent density in the sce-

narios. For scenarios with sparse traffic, a speedup of up to 2.8 was

achieved, whereas with dense traffic, the reduced amount of oppor-

tunities for fast-forwarding allowed for only limited performance

gains. One avenue for future work lies in identifying further oppor-

tunities for fast-forwarding, e.g., by increasing the spatial resolution

of the approach, or by considering clusters of cars jointly. Further,

methods to control the overhead of the approach could improve

performance. For instance, avoiding attempts for fast-forwarding

in congested areas of the road network could reduce unnecessary

computations, while requiring further considerations to maintain

correctness. Offloading the computational overhead to a separate

processing element could hide some of the overhead. Finally, the

fast-forwarding approach could be extended to models with more

complex agent movement behaviors such as crowd models.

8 ACKNOWLEDGMENTS
This work was financially supported by the Singapore National

Research Foundation under its Campus for Research Excellence

And Technological Enterprise (CREATE) programme.

REFERENCES
[1] Wilco Burghout, Haris Koutsopoulos, and Ingmar Andreasson. 2005. Hybrid

Mesoscopic-Microscopic Traffic Simulation. Transportation Research Record:
Journal of the Transportation Research Board 1934 (2005), 218–255.

[2] Arnold H Buss and Paul J Sánchez. 2005. Simple Movement and Detection in

Discrete Event Simulation. In Proceedings of the Winter Simulation Conference.
Winter Simulation Conference, 992–1000.

[3] Moo-Kyoung Chung and Chong-Min Kyung. 2006. Improving Lookahead in

Parallel Multiprocessor Simulation Using Dynamic Execution Path Prediction. In

Proceedings of the Workshop on Principles of Advanced and Distributed Simulation.
IEEE, 11–18.

[4] Ewa Deelman, Rajive Bagrodia, Rizos Sakellariou, and Vikram Adve. 2001. Im-

proving Lookahead in Parallel Discrete Event Simulations of Large-scale Ap-

plications Using Compiler Analysis. In Proceedings of the Workshop on Parallel
and Distributed Simulation. IEEE Computer Society, Washington, DC, USA, 5–13.

http://dl.acm.org/citation.cfm?id=375658.375659

[5] Steve L Ferenci, Richard M Fujimoto, Mostafa H Ammar, Kalyan Perumalla, and

George F Riley. 2002. Updateable Simulation of Communication Networks. In

Proceedings of theWorkshop on Parallel and Distributed Simulation. IEEE Computer

Society, 107–114.

[6] Richard Fujimoto. 2015. Parallel and Distributed Simulation. In Proceedings of
the Winter Simulation Conference. IEEE Press, 45–59.

[7] R. M. Fujimoto. 1988. Lookahead in Parallel Discrete Event Simulation. Proceed-
ings of the International Conference on Parallel Processing, Vol. 3 (1988), 34–41.

[8] Richard M Fujimoto. 2000. Parallel and Distributed Simulation Systems. Wiley

New York.

[9] Walter Gander. 1985. On Halley’s Iteration Method. The American Mathematical
Monthly 92, 2 (1985), 131–134.

[10] Peter G Gipps. 1981. A Behavioural Car-following Model for Computer Simula-

tion. Transportation Research Part B: Methodological 15, 2 (1981), 105–111.
[11] Peter G Gipps. 1986. A Model for the Structure of Lane-changing Decisions.

Transportation Research Part B: Methodological 20, 5 (1986), 403–414.
[12] Masatoshi Hanai, Toyotaro Suzumura, Georgios Theodoropoulos, and Kalyan S

Perumalla. 2015. Exact-differential Large-scale Traffic Simulation. In Proceedings
of the Conference on Principles of Advanced Discrete Simulation. ACM, 271–280.

[13] Jack Harris and Matthias Scheutz. 2012. New Advances in Asynchronous Agent-

based Scheduling. In Proceedings of the International Conference on Parallel and
Distributed Processing Techniques and Applications. WorldComp, 1.

[14] Maria Hybinette and Richard M Fujimoto. 2001. Cloning Parallel Simulations.

ACM Transactions on Modeling and Computer Simulation 11, 4 (2001), 378–407.

[15] Arne Kesting, Martin Treiber, and Dirk Helbing. 2007. General Lane-changing

Model MOBIL for Car-following Models. Transportation Research Record: Journal
of the Transportation Research Board 1999 (2007), 86–94.

[16] Arne Kesting, Martin Treiber, and Dirk Helbing. 2008. Agents for Traffic

Simulation. In Multi-Agent Systems Simulation and Applications, Adelinde M.

Uhrmacher and Danny Weyns (Eds.). CRC Press, Chapter 11, 325–356. http:

//arxiv.org/abs/0805.0300

[17] Michael Lees, Brian Logan, and Rob Minson. 2005. Modelling environments

for distributed simulation. In Environments for Multi-Agent Systems. 150–167.
http://www.springerlink.com/index/81g6x6elxhx9tbnq.pdf

[18] Y.-B. Lin and E.D. Lazowska. 1990. Exploiting Lookahead in Parallel Simulation.

IEEE Transactions on Parallel and Distributed Systems 1, 4 (1990), 457–469. https:

//doi.org/10.1109/71.80174

[19] Jason Liu and David M Nicol. 2002. Lookahead Revisited in Wireless Network

Simulations. In Proceedings of the Workshop on Parallel and Distributed Simulation.
IEEE Computer Society, 79–88.

http://dl.acm.org/citation.cfm?id=375658.375659
http://arxiv.org/abs/0805.0300
http://arxiv.org/abs/0805.0300
http://www.springerlink.com/index/81g6x6elxhx9tbnq.pdf
https://doi.org/10.1109/71.80174
https://doi.org/10.1109/71.80174

SIGSIM-PADS ’18 , May 23–25, 2018, Rome, Italy Philipp Andelfinger, Yadong Xu, Wentong Cai, David Eckhoff, and Alois Knoll

[20] Boris D. Lubachevsky. 1989. Efficient Distributed Event-Driven Simulations of

Multiple-Loop Networks. Commun. ACM 32, 1 (1989), 111–123.

[21] MartinMauve, Jürgen Vogel, Volker Hilt, andWolfgang Effelsberg. 2004. Local-lag

and Timewarp: Providing Consistency for Replicated Continuous Applications.

IEEE Transactions on Multimedia 6, 1 (2004), 47–57.
[22] Ruth Meyer. 2014. Event-Driven Multi-Agent Simulation. In International Work-

shop on Multi-Agent Systems and Agent-Based Simulation. Springer, 3–16.
[23] Richard A Meyer and Rajive L Bagrodia. 1999. Path Lookahead: a Data Flow

View of PDES Models. In Proceedings of the Workshop on Parallel and Distributed
Simulation. IEEE, 12–19.

[24] D.M. Nicol and J.H. Saltz. 1988. Dynamic Remapping of Parallel Computations

with Varying Resource Demands. IEEE Trans. Comput. 37, 9 (1988), 1073–1087.
https://doi.org/10.1109/12.2258

[25] Philip Pecher, Michael Hunter, and Richard Fujimoto. 2015. Efficient Execution

of Replicated Transportation Simulations with Uncertain Vehicle Trajectories.

Procedia Computer Science 51 (2015), 2638–2647.
[26] Kalyan S Perumalla, MohammedMOlama, and Srikanth B Yoginath. 2016. Model-

Based Dynamic Control of Speculative Forays in Parallel Computation. Electronic
Notes in Theoretical Computer Science 327 (2016), 93–107.

[27] Patrick Peschlow, Andreas Voss, and Peter Martini. 2009. Good News for Parallel

Wireless Network Simulations. In Proceedings of the International Conference on
Modeling, Analysis and Simulation of Wireless and Mobile Systems. ACM, 134–142.

[28] Matthias Scheutz and Jack Harris. 2010. Adaptive Scheduling Algorithms for

the Dynamic Distribution and Parallel Execution of Spatial Agent-based Models.

Parallel and Distributed Computational Intelligence 269 (2010), 207–233.
[29] Matthias Scheutz and Paul Schermerhorn. 2006. Adaptive Algorithms for The

Dynamic Distribution and Parallel Execution of Agent-based Models. J. Parallel
and Distrib. Comput. 66, 8 (2006), 1037–1051. https://doi.org/10.1016/j.jpdc.2005.

09.004

[30] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested Traffic

States in Empirical Observations and Microscopic Simulations. Physical Review
E 62, 2 (February 2000), 1805–1824.

[31] Jun Wang, Zhenjiang Dong, Sudhakar Yalamanchili, and George Riley. 2013.

Optimizing Parallel Simulation of Multicore Systems Using Domain-Specific

Knowledge. In Proceedings of the Conference on Principles of Advanced Discrete
Simulation. ACM, 127–136.

[32] Yadong Xu, Wentong Cai, Heiko Aydt, Michael Lees, and Daniel Zehe. 2017.

Relaxing Synchronization in Parallel Agent-based Road Traffic Simulation. ACM
Transactions on Modeling and Computer Simulation - Special Issue on PADS 2015
27, 2 (2017), 14:1–24.

[33] Daniel Zehe, Suraj Nair, Alois Knoll, and David Eckhoff. 2017. Towards City-

MoS: A Coupled City-Scale Mobility Simulation Framework. In 5th GI/ITG KuVS
Fachgespräch Inter-Vehicle Communication. FAU Erlangen-Nuremberg.

https://doi.org/10.1109/12.2258
https://doi.org/10.1016/j.jpdc.2005.09.004
https://doi.org/10.1016/j.jpdc.2005.09.004

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Agent-based modeling and simulation
	2.2 Microscopic traffic simulation

	3 Proposed Fast-Forwarding Approach
	3.1 Problem definition
	3.2 Identifying independence intervals
	3.3 Fast-forward function for the Intelligent Driver Model
	3.4 Discussion

	4 Evaluation
	4.1 Validation
	4.2 Performance measurements

	5 Discussion
	6 Related Work
	6.1 Exploiting independent state updates
	6.2 Hybrid traffic simulation

	7 Conclusions and Outlook
	8 Acknowledgments
	References

